
Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

1 

SYSTEMATIC SOURCES OF SUBOPTIMAL INTERFACE DESIGN IN 

LARGE PRODUCT DEVELOPMENT ORGANIZATIONS 
 

Jonathan Grudin 
Aarhus University 

 
 
 

ABSTRACT 

Many poor interface features are the result of carelessness, ignorance or neglect in 

the development process.  For these features, methods such as user involvement in 

iterative design with prototyping, the use of checklists and guidelines, and even 

formal evaluation can be of great help.  However, there are strong forces present 

in development environments that block the use of such methods and distort 

interface designs in a systematic way.  Because these forces serve legitimate goals, 

such as making a design simpler, more easily communicated, or more marketable, 

they are more difficult to counter; because developers are skilled at working 

toward those goals, the tangential effects on the interface usually pass unnoticed.  

This descriptive, empirical article describes these forces in the context of large 

organizations developing commercial off-the-shelf software products.  Most 

points are supported by examples and by a logical argument.  Not all of the 

phenomena may appear in a given development organization, but the overall 

picture of a complex environment in which interface development requires 

unwavering attention is quite general. 

Author’s address:  Jonathan Grudin, Department of Computer Science,  

Aarhus University, Ny Munkegade 116  Building 540, DK-8000 Aarhus C, Denmark 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

2 

CONTENTS 

1. INTRODUCTION 
2. THE CONTEXT: PRODUCT DEVELOPMENT PROJECTS 
 2.1. Product Development Organizations 
 2.2. Development Projects: Defining Function Before Form 
 2.3. Degrees of User Involvement 
3. OBSTACLES TO USER INVOLVEMENT 
 3.1. Challenges in Motivating the Developers 
 3.2. Challenges in Identifying Appropriate Users 
 3.3. Challenges in Obtaining Access to Users 
 3.4. Challenges in Motivating Potential Users 
 3.5. Challenges in Benefiting From User Contact 
 3.6. Challenges in Obtaining Feedback From Existing Users 
 3.7. The Difficulty of Identifying Design Teams 
 3.8. The Late Involvement of Interface Professionals in Projects 
 3.9. Not Enough Time 
4. GOALS THAT SHAPE INTERFACES WHEN USERS’ VOICES ARE NOT HEARD 
 4.1. Software Development Goals 
 4.2. Cognitive Processes and Individual Goals 
    Individual Goals Arising From Professional Responsibilities 
     The Goal of Understanding the Software Architecture 
     The Goal of Design Consistency 
     The Goal of Design Simplicity 
     The Goal of Anticipating Low-Frequency Events 
     The Goal of Thoroughness 
    Individual Goals Arising From Personal and Career Issues 
     The Goal of Protecting Turf (Retaining Responsibilities) 
     The Goal of Staying Current (Extending Skill Repertoire) 
     The Goal of Personal Expression 
 4.3. Social Processes and Group or Team Goals 
     The Goal of Communicating a Design 
     The Goal of Coordinating a Development Project 
     The Goal of Compensating Developers 
     The Goal of Cooperation 
 4.4. Organizational Processes and Corporate Goals 
     The Goal of Efficient Division of Labor 
     The Goal of Managing Development 
     The Goal of Effective Decision-Making 
     The Goal of Competing in the Marketplace 
5. WAYS TO PROCEED 
 5.1. Positive Conditions for User Involvement 
 5.2. Processes That Incorporate User Involvement 
 5.3. Technology to Support User Involvement 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

3 

 5.4. Strengthening the Use of Mediators 
 5.5. Redefining the User Population 
 5.6. Redefining the Development Company 
6. CONCLUSION 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

4 

1.  INTRODUCTION 

The need for developers of interactive systems to understand the requirements 

of the eventual users and the work that the systems are to support is well known.  

Developers obtain this understanding in different ways.  They often rely on 

intuition.  They also learn about users indirectly, by reading or by being told about 

users’ needs.  They may have direct but limited interaction with users through 

informal interviews, laboratory tests of prototypes, and other means.  The most 

embracing approach, sometimes called participatory or collaborative design, 

enlists prospective users as full members of the development group. 

There is a strong consensus that intuition and indirect approaches to 

understanding users and their work are usually insufficient.  The design principles 

formulated by Gould and his colleagues at IBM (summarized in Gould, 1988) are:  

(a) focus early and continuously on users, (b) integrate consideration of all aspects 

of usability, (c) test versions with users early and continuously, and (d) iterate the 

design.  Despite being widely cited, these principles are not often followed.  Many 

of the useful and usable systems that exist are the result of an undesirably long 

evolutionary process.  Gould wrote that the principles “are hard to carry out, 

mainly for organizational and motivational reasons” (p. 776), which are not 

specified.  This article describes these reasons. 

My description focuses on one systems development context:  large product 

development organizations.  Product development organizations and the 

development projects within them are described in the next section.  Most of the 

companies described were formed before product usability attained its present 

visibility.  As a result, they did not address the particular needs of developing 

interactive systems when defining their basic organizational structures and 

development processes.  Section 3 of this article outlines the consequences: 

common difficulties in achieving and benefiting from user involvement in 

development.  In Section 4 goals that are present in such organizations and that 

can conflict with good interface design are described.  These goals often seem 

unrelated to interface considerations, but in the absence of knowledge of users and 

their work, they can be an unrecognized, subtle source of bad design decisions.  In 

Section 5, I describe approaches to addressing the problems.  Eventually, 

organizational change may be required.  In the meantime, those working within 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

5 

such organizations must be aware of the problems and seek constructive paths 

around them. 

Because goals that conflict with interface optimization are always present, 

interface development requires constant vigilance.  Poor design features that result 

from carelessness or ignorance are dispelled by applying care or knowledge, but 

poor features resulting from competing pressures often recur in the same or in 

different locations. 

This article draws on the growing literatures in human-computer interaction, 

much of which originates in product development companies.  It also relies on 

surveys and interviews of over 200 interface designers in several product 

development companies (Grudin & Poltrock, 1989; Poltrock, 1989b), experiences 

in product development, and thousands of conversations with fellow developers 

over the years.  Of course, organizations vary considerably.  Reliable, industry-

wide data are difficult to find.  The obstacles described here are encountered, but 

not universally.  The hope is that the forewarned reader will be better able to 

anticipate, recognize, and respond to these and similar challenges, if and when 

they arise. 

2.  THE CONTEXT: PRODUCT DEVELOPMENT PROJECTS 

This section contains an outline of the development context discussed 

throughout the article.  First, large product development organizations are defined.  

Then, development projects within these organizations are analyzed, revealing 

why the human-computer interface or “user interface” is the principal focus of 

utility and usability for a product development team.  Finally, the range of 

possible user involvement, from full collaboration to occasional or indirect 

consultation, is discussed. 

2.1.  Product Development Organizations 

This article focuses on large organizations that develop and market “off the 

shelf” or “shrinkwrap” software applications and systems.  This excludes in-house 

development projects and projects undertaken to fulfill contracts.  Internal and 

contract development have different advantages and disadvantages for user 

involvement in developing interactive systems (Grudin, 1991a).  Of course, 

companies often straddle categories: a product development company that bids on 

government contracts, a company that markets a system built initially for internal 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

6 

use or under contract, and so forth.  In addition, small product development 

companies may not experience the problems described here, and companies of 

moderate size are likely to experience some and not others. 

Although product development is only a fraction of interactive systems 

development, it is the locus of much advanced interface work.  Large product 

development companies are visibly concerned with usability and “look and feel.”  

They hire and train many user interface specialists, recruiting heavily from 

research universities.  Such specialists dominate the conferences and journals in 

the field of human-computer interaction, especially in the United States, as 

reflected in the strong presence of product developers from IBM, Digital, Hewlett-

Packard, Xerox, Apple and other large companies at Computer and Human 

Interaction (CHI) Conferences. 

Most of these companies matured in the 1960s and 1970s.  Their principal 

source of revenue was selling or leasing hardware; software functionality was 

secondary, and the human-computer interface received little attention.  Most 

processing was batch, not interactive, and the immediate users were computer 

professionals.  Since then, software has come to rival hardware in importance and 

interactive software is widespread; many of the successful new product 

development companies of the 1980s primarily sell interactive software.  Until the 

success of the Macintosh in the late 1980s, the focus was entirely on functionality 

and price; now, the interface is increasingly important.1 

Although attitudes are changing, the business operations and development 

practices of most of today’s large product development companies were formed 

when hardware and software functionality were the only considerations.  It is not 

surprising that their basic organizational structures and processes do not facilitate 

interface development.  In fact, we will see that the design and development of 

good interfaces are often systematically obstructed—not intentionally, but 

obstructed nonetheless. 

                                                 
1 Apple differs from most large product development companies in several ways.  In particular, it 
matured more recently, in the era of interactive systems, and perhaps for that reason does not share 
some of the organizational structures and development practices that are described here. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

7 

2.2.  Development Projects: Defining Function before Form 

The timeline of an ongoing development project includes a start date and a 

projected completion date.  Reality is not always very crisp; one event flows into 

another, and decisions are gradually recognized to have emerged along the way.  

However, the project start date does have meaning:  A team is formed, 

assignments announced, and budgets allocated.  The start date may even be 

dramatized, as when the first working name of a project is a number based on the 

month and day of its initiation.  Easily overlooked is the activity that preceded the 

start date. 

Product definition precedes the formation of the development team.  During 

this phase the high-level “functionality” is identified.  In the second phase, the 

team is assembled, and it designs and develops the necessary low-level operations, 

the visual appearance, the documentation, and other aspects of the human-

computer interaction.  Loosely speaking, the functionality is defined in the first 

phase and the interface in the second.  Although in principle it is notoriously 

difficult to draw a line between software functionality and its interface, a de facto 

distinction is made for each project.  The high-level functionality is defined by a 

different group of people, based on a wide range of factors, before the 

development team is formed.  The development team is handed the product idea 

and is responsible for the remaining design.2  The precise division of design 

responsibility varies from project to project.  In fact, as the interface grows in 

importance, key design decisions move from the development phase to the 

product definition phase.  A product is required to have a graphical interface, 

adhere to a corporate “look and feel,” run on Windows 3.0, and so on—

constraining the design space of the development team. 

When can user involvement enter this two-phase process?  First, consider the 

possibility of user participation in product definition.  This phase is generally 

                                                 
2 In contrast, those working on in-house development projects avoid the functionality/interface split 
to the degree they consider the system as a whole.  It makes sense to do so; one can have a usable 
system that is not very useful or a useful system that is not very usable, but the most desirable 
outcome suggests working on both together.  (Of course, this requires resisting a premature 
definition of the proposed system based on management and perhaps worker preconceptions.)  
Thus, researchers and developers working on in-house systems, including the British and 
Scandinavian participatory design experiments, focus on the work that the computer is to support 
and find the “user interface focus” of the CHI or human-computer interaction field to be limited.  
The latter focus is natural for product developers, whose involvement generally follows product 
definition. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

8 

carried out by a management group.  Companies vary in the degree to which they 

are driven by engineering or marketing initiatives, but marketing typically 

influences product definition.  “User needs” are considered in developing a 

market justification or business plan.  Open-ended needs-finding—involving users 

without any preconceptions—is not unheard of, but  it is rare; ideas for products 

or enhancements are usually plentiful.  Other factors come into play:  Does the 

potential product fit coherently into the existing product line?  Will it undermine 

sales of other products?  Are major competitors using a feature to make inroads 

into the company’s existing customer base?  Does the marketing and sales force 

have the expertise and motivation to sell it?  Will sales be enough to pay for the 

necessary advertising campaign?  Does it test a potentially desirable new 

application domain for the company?  Is it a new release needed primarily to 

reassure customers that the product line is not being abandoned?  Strategic 

decisions such as these are crucial to the company and are often closely guarded 

for competitive reasons.  Although major customers are consulted, the possible 

role of user involvement at this point is very limited. 

As the product definition phase proceeds, issues that would benefit from such 

involvement may be addressed.  The market analysis may include surveys and 

focus groups.  Often, mediators—consultants, the trade press, internal marketing 

staff, users’ “representatives” (e.g., systems analysts who also represent the 

interests of others, such as the users’ management, which may not be identical) 

are relied on for information about potential users.  But “end users” from 

customer organizations are unlikely to be major participants in this complex 

product definition process.  After all, rarely are individual developers from the 

development organization fully involved. 

The rest of this article focuses on the period after the functional specification 

is defined and the baton is passed to the development team.  Once the project team 

is assembled, the product definition group largely recedes from view, moving on 

to other concerns while monitoring progress through documentation and 

management reviews.  This strongly phased process resembles the requirements-

driven model that originated in contract development and is widely applied to 

internal development (Grudin, 1991a).  The belief that a written requirements 

specification is enough to communicate a product idea had more validity for 

noninteractive systems; applying it here may result in the problem found in 

contract and internal development:  A product is delivered that is not quite what 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

9 

those defining it had in mind or what its recipients find usable.  As product 

usability draws more attention, more rapid-prototyping efforts may occur within 

marketing groups prior to product definition, permitting more opportunity for 

collaboration among marketers and developers—and perhaps users. 

The part of the design affecting the eventual users that remains to be defined 

by the development team corresponds approximately to the human-computer 

interface, liberally defined.  This includes documentation, training, hot-line 

support, and other elements that directly affect the users’ experiences with the 

product.  It also includes low-level functions; for example, whether a one-step 

“move” or a two-step “cut” and “paste” is provided.  The development team may 

have license to add features that can be justified.  Conversely, as just noted, some 

aspects of the interface may have been constrained in the product definition phase. 

In summary, the nature of product development works to separate the 

definition of high-level functionality from subsequent development.  For this 

reason, user involvement in product development projects is almost exclusively in 

furtherance of the design and evaluation of the interface. 

2.3.  Degrees Of User Involvement 

What is the optimal degree of user participation in development?  If you are 

developing a compiler, users’ involvement will be minimal.  If you are copying 

features from an existing product in a mature application area, limited contact 

with potential users can be adequate.  If you are developing an interactive system 

in a new domain, full collaboration with users can be essential. 

Here we find an important contrast to the in-house development situation.  In-

house projects involve the development of a new system for a specific group of 

users.  Because the system must be accepted by the target group, a compelling 

argument can be made to learn as much as possible about the future users’ shared 

or even individual backgrounds, work practices, and preferences.  And the socio-

technical and participatory design approaches arose in this context.  The product 

situation is different; the specific users are not known in advance, one is in a sense 

targeting a “greatest common denominator.”  Earlier versions or competitors’ 

products often serve as guides; as already noted, many of the major decisions were 

made in the product definition phase. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

10 

Product developers also have a particularly wide range of indirect approaches 

to acquiring some understanding of computer users.  They learn about users in 

courses, conferences, and trade shows.  They rely on marketing and sales people, 

customer service and training staff, consultants, information systems specialists, 

users groups, standards organizations, trade magazines, and journals.  The 

adequacy of these and other indirect approaches depends on the circumstances, 

but many of these mediators exist to serve this communication role and have an 

incentive to make themselves useful. 

Although there is no universal answer or easy algorithm for calculating the 

optimal degree of direct user involvement, current practice seems to produce too 

little.  Many products are unusable or unnecessarily difficult, and strong forces are 

pushing developers to obtain more detailed information about future users of their 

products.  Four of these forces are: 

1.  The spread of computer use into environments that are increasingly unlike 

development environments.  In the past, most people who interacted directly with 

computers were engineers, programmers, or trained operators, so developers’ 

intuitions about user environments were good.  As computer users become less 

technical and more diverse, developers acquire a corresponding need to obtain 

more information about them and their work environments. 

2.  The rising expectations of computer buyers and users.  Even as the 

growing capabilities of applications and systems present greater challenges in 

instruction and information presentation, the willingness to adjust to the system 

and the tolerance for poor interfaces are declining.  As product prices decline, 

heavy investment in training is less palatable.  Again, the burden shifts to the 

developers to create responsive systems. 

3.  Maturing application areas.  In a new market, functionality is likely to 

govern purchasing decisions.  But when several products offer comparable 

functionality, ever more detailed knowledge about users and the contexts of use is 

needed to fine-tune products and provide an edge. 

4.  Emerging applications that support groups (“groupware”) require more 

knowledge of users and their environments than did single-user products.  

Groupware must support a wider range and greater percentage of users in a given 

setting, bringing product developers closer to the situation that in-house 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

11 

developers have faced.  The limitations of any one person’s intuitions for group 

behavior and a greater need to consider issues surrounding adoption in the work 

environment require developers to gather more information than before (Grudin, 

in press). 

These escalating demands, as well as frequent product failure and user 

dissatisfaction, suggest that intuition and indirect methods of learning about users, 

which are not doing well now, are likely to be increasingly inadequate.  Next, we 

consider direct user involvement. 

Direct contact takes many forms.  Actual or potential users may be observed, 

surveyed, interviewed, tested, studied, and experimented upon.  Remarkable 

ingenuity has been displayed in finding ways to poke and prod users.  Can 

approaches that fall short of full collaboration work?  In in-house development 

projects, charged with addressing the specific needs of a well-defined set of users, 

full collaboration may be necessary.  In product development, lesser measures can 

answer some questions.  Product developers, aiming for a broad market, are less 

concerned with differences than with commonality.  They have focused on 

characteristics shared by most users: motor skills (keyboard layout, mouse 

control), perceptual processes (character legibility, color contrasts), and cognitive 

processes (recognizing menu item names, scanning displays for information).  

Limited forms of user involvement such as formal experiments resolve some of 

these questions.  However, to deal with issues closer to the task or application 

domain, these laboratory methods are less adequate.  In fact, even low-level 

design issues such as function key placement and default menu item assignment 

can hinge on specific aspects of users’ tasks (Grudin, 1989). 

A full collaboration with future users may be preferable to attempts to 

“extract information” from users late in development.  Consider the situation 

turned around:  Imagine an “end-user programming” setting in which the 

developers play a secondary role.  The system is largely “tailorable” and the 

“project team” consists primarily of users, with programmers in a support role.  In 

this example, we would argue that the team of users should attempt to keep the 

programmers involved from the start and not hope to rely on extracting 

information from them when some coding is necessary in the late stages of 

redesigning the system! 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

12 

Product developers can be aware of the virtues of heavy user involvement in 

development; for example, they may work with domain experts hired from user 

organizations.  Gould and Lewis (1983) of IBM made an early, forceful argument 

for participatory design, eschewing reliance on mediators and more limited 

empirical approaches: 

We recommend that typical users (e.g., bank tellers) be used, as opposed to a 

“group of expert” supervisors, industrial engineers, programmers.  We 

recommend that these potential users become part of the design team from the 

very outset when their perspectives can have the most influence, rather than 

using them post hoc to “review,” “sign off on,” “agree” to the design before it 

is coded.  (p. 51) 

This advice has been prominently republished (e.g., Gould, 1988; Gould, Boies, 

Levy, Richards, & Schoonard, 1987; Gould & Lewis, 1985) and is widely cited, 

yet it is rarely followed.  Gould and Lewis (1985, p. 304) allude to “obstacles and 

traditions” that stand in the way.  The next sections explore those obstacles and 

traditions. 

3.  OBSTACLES TO USER INVOLVEMENT 

This section covers challenges to user involvement that arise in several ways.  

Some are due to the inherent nature of product development:  The actual users are 

not truly identified until development is complete and the product is marketed, 

potential users work for different organizations, and any one set of users may be 

too limiting.  Additional obstacles can be traced to the division of labor within 

development organizations that were often established to develop and market non-

interactive systems.  Typical allocations of responsibility serve useful purposes, 

but they distribute aspects of the interface across organizational boundaries and 

separate software developers from the world outside (see Figure 1).3  In particular, 

contact with customers and users is the province of groups or divisions outside of 

development: sales, marketing, training, field support, and upper management.  

The people assigned these tasks are not primarily concerned with the interface, 

their relevant knowledge is not systematically organized, and they are often 

                                                 
3 Many small and large variants of this organizational structure are found.  For example, functions 
such as quality control and performance analysis may be handled centrally. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

13 

located far from the developers.  They have a limited sense of what information 

would be useful or to whom they should forward it.  Finally, after discussing these 

structural impediments, I examine difficulties that can be traced to standard 

software development procedures and techniques. 

 

Figure 1.  A typical organization chart (partial) showing the separation of 
user-related functions. 

Marketing PublicationsField SupportTraining Sales

Documen- 
tation

On-line 
Help

Applications 
VP

Performance 
Analysis

Product 
Support

Quality 
Control

Build & 
Integrate

User Interface 
Software Engineers

Human 
Factors

Other Products Other Products

Applications 
Developers

Product 
Manager

Development

Training 
Courses

On-line 
Training

 

3.1.  Challenges in Motivating the Developers 

For user involvement to be effective, most or all members of the development 

team must be committed to the approach.  One person can work with users and try 

to introduce the results into the process, but iterative development requires broad 

involvement, prototyping and testing often require software support, and the 

results must be valued.  Management must be willing to invest the resources, and 

the help of others may be needed to smooth contacts with users. 

Although most developers would agree to user involvement in principle, they 

may not follow through for several reasons.  Some engineers lack empathy or 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

14 

sympathy for inexperienced or nontechnical computer users.  When developers 

and users meet, they sometimes find that different values, work styles, and even 

languages get in the way of communicating.  Developers tend to be young, 

rationalistic, and idealistic, products of relatively homogeneous academic 

environments.  They often have little experience or understanding of the very 

different work situations and attitudes of many system users.  The best of 

intentions can succumb to these factors, especially in the face of the slowness and 

imprecision that often accompany user involvement. 

3.2.  Challenges in Identifying Appropriate Users 

Developers may have a market in mind, but the actual users of a product are 

not known until the product is bought.  This is particularly true for new products, 

but even new releases or extensions of existing products are often intended to 

expand market share in one or another direction, and they may not be adopted by 

all existing users.  The fates of many products, both positive and negative, are 

reminders of the inherent uncertainty in product development.  The IBM PC had a 

wider than expected appeal, for example, and we can be confident that the 

developers of countless failed products anticipated users who never materialized. 

Further obstacles to identifying potential users stem from the nature of 

developing products intended to appeal to a broad range of people.  The effort is 

focused on casting as wide a net as possible; to shift to narrowing perspective in 

order to identify specific or characteristic users is difficult.  Choosing one set of 

users risks ignoring other individuals or groups.  The seriousness of the problem 

of defining characteristic users can be seen by considering the experience of 

Scandinavian researchers in the more favorable in-house development context.  

These projects began with relatively constrained user populations within one 

industry or even one organization.  Even so, selecting representative users was 

found to be a major challenge (e.g., Ehn, 1989, pp. 327-358).  Such problems are 

greater for developers of generic products that are widely distributed by the 

development company or by independent software vendors. 

Obstacles also arise from the division of labor.  User interface specialists 

rarely see “the big picture.”  They may work with a development team assigned to 

a single application or even to part of an application.  Not even the project 

manager has a perspective encompassing the application mix that customers are 

expected to use, the practices and preferences of the installed customer base, and 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

15 

strategic information about the intended market for a product.  Although this 

broad perspective may be found in marketing or sales divisions, these divisions 

are often geographically and organizationally distant from the development 

groups.  The projected market—the identity of the future users—may be closely 

guarded by upper management due to its competitive importance. 

In large companies, marketing and sales representatives become species of 

users of products emerging from development.  They also consider themselves to 

be internal advocates for the customers.  Because the customers are often 

information specialists or managers, rather than “end-users,” the chain of 

intermediaries lengthens.  Low levels of contact, miscommunication, and a lack of 

mutual respect between marketing and development can further reduce the value 

of this indirect link between developers and users (e.g. Grudin & Poltrock, 1989; 

“Mitch Kapor,” 1987; Poltrock, 1989b). 

Another complication in identifying appropriate users is that a system is often 

modified substantially after the development company ships it but before the users 

see it.  This is done by software groups within customer organizations and by 

value-added resellers who tailor products for specific markets, for example.  

These developers are in a real sense users of the product—perhaps among the 

most important potential users.  It may be more appropriate for them to involve 

the actual end-users.  In any case, the initial development team must discover 

which aspects of their design are likely to be “passed along” to users.  Third-party 

intermediaries take on some of the responsibility for meeting user needs, but their 

role complicates the selection of representative end-users. 

3.3.  Challenges in Obtaining Access to Users 

Once candidates have been identified, the next challenge is to make contact 

with them. Obstacles can arise within the users’ organization, within the 

development organization, or in the gap between them. 

In the User Organization.  Contacts with customers are often with managers 

or information system specialists, rather than with the computer users themselves.  

It may not be easy for developers to get past them:  Their job is precisely to 

represent the users.  In addition, the employers of prospective users may see little 

benefit in freeing them to work with an outside development group. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

16 

In the development organization.  Within the product development company, 

protecting (or isolating) developers from customers is traditionally a high 

priority.  The company cannot afford to let well-intentioned developers spend all 

of their time customizing products for individual users; priority is given to 

developing generic improvements to benefit scores or hundreds of users.  Savvy 

customers are well aware of the value of having the phone number of a genial 

developer.  Barriers erected to keep users from contacting developers also prevent 

developers from easily connecting with users:  The relationships and channels are 

not there. 

The development company’s sales representatives may be reluctant to let 

developers meet with customers.  A developer, coming from a different culture, 

might offend or alarm the customers or create dissatisfaction with currently 

available products by describing developments in progress.  Similarly, the 

marketing group may consider itself the proper conduit into the development 

organization for information about customer needs and fear the results of random 

contacts between developers and users.  In one company, developers, including 

human factors engineers, were prevented from attending the annual users’ group 

meeting.  Marketing viewed this as a show staged strictly for the customers. 

Physical and linguistic barriers.  User organizations may not be nearby—a 

formidable barrier to sustained user involvement.  As international markets 

become increasingly central for many large product development companies, 

access to an important segment of the user population is cut off by linguistic, 

cultural, and physical barriers. 

Sometimes a potential user is within the development company.  This is 

convenient and can be used to good advantage, but it is a dangerous special case 

to rely on.  The company is not in business to build products for itself, and user 

environments are less likely to resemble development environments than in the 

past.  Of course, the riskiest user of all is the developer-user.  The developer-user 

is generally aware of implementation details and is often an infrequent user who 

has detailed knowledge of the product, a very atypical combination of user 

characteristics. 

3.4.  Challenges in Motivating Potential Users 

In an in-house development project, the product developers share the same 

management (at some level) with the potential users.  Because this is not true in 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

17 

the case of product developers and external users, it is more difficult for the users 

to obtain time away from their jobs.  In addition, the potential users can be less 

motivated, knowing that they may not end up being actual users of the final 

product.  The problems of sustaining user involvement have been recognized as 

substantial even in internal development projects.  Scandinavian collaborative 

design projects have emphasized techniques for maintaining a high level of user 

interest (Greenbaum & Kyng, 1991).  Of course, for contacts of limited duration, 

many computer users and their employers are pleased to be consulted. 

Potential users can be less motivated if they do not see how the planned 

product will benefit themselves if they do get it.  This is particularly problematic 

for large systems and for groupware applications, most of which require 

widespread use but selectively benefit managers (Grudin, 1988; 1990).  The 

situation is even worse if the potential users feel that their jobs might be 

threatened by a product that promises increased efficiency. 

3.5.  Challenges in Benefiting From User Contact 

As described in Section 2.3, contact between developers and users takes many 

forms.  To benefit from verbal interaction, they must learn one another’s ways of 

talking about technology and its use or develop a new language.  The importance 

of this difficult task is also emphasized in recent Scandinavian projects 

(Greenbaum & Kyng, 1991).  The use of prototypes can reduce the dependence on 

verbal communication, although the prototyping tool can introduce design 

constraints or fail to reflect future implementation constraints. 

Contact with users inevitably provides developers with only a partial 

understanding of the use situation.  In particular, although developers can obtain 

insight into the nature of users’ first encounters with a novel system, application, 

or feature, patterns of highly experienced use can be very important and are more 

difficult to explore prior to product release.  Even in projects with careful user 

testing of design features, developers override test results in response to the 

intuited needs of heavy users (e.g., Bewley, Roberts, Schroit, & Verplank, 1983).  

Because developers are likely to assume that heavy users will resemble 

themselves, this is a serious dilution of user involvement. 

For user contact to be translated into user involvement, it must have an 

impact on product design.  When the identity of future users is uncertain and a 

wide range of conceivable candidates exists, a team may find it difficult to assess 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

18 

their experiences with a small number of possible users.  The Scylla of 

overgeneralizing from a limited number of contacts is accompanied by the 

Charybdis of bogging down when users disagree.  Again, evaluation is particularly 

challenging for systems that support groups (Grudin, 1991b).  Finally, if user 

involvement does result in design recommendations, only the first step has been 

taken.  Design ideas must be steered through a software development process that 

is typically fraught with obstacles to interface optimization.  User involvement 

can increase the odds of successfully navigating this course, but the journey is 

rarely easy, for reasons described in Section 4. 

3.6.  Challenges in Obtaining Feedback From Existing Users 

Feedback from users may be collected informally or through bug reports and 

design change requests.  The latter generally focus on what is of primary 

importance in the marketplace (e.g., hardware reliability and high-level software 

functionality) and not on interface features.  The little information that is collected 

rarely gets back to developers.  Customer support groups such as training and field 

service shield developers from external contacts by maintaining products and 

working with customers on specific problems.  The original product developers 

move on to new releases or product replacements, are reassigned to altogether 

different projects, or leave the company for greener pastures. 

The extent of feedback may vary with the pattern of marketing and product 

use.  A company such as Apple, with a heavy proportion of discretionary 

purchases initiated by users rather than by management or information systems 

specialists, accrues benefits from having a particularly vocal user population.  In 

general, though, a lack of user feedback may be the greatest hindrance to good 

product interface design and is among the least recognized defects of standard 

software development processes.  System developers cannot spend all of their 

time fielding requests from customers, but their overall lack of experience with 

feedback is an obstacle to improving specific products and to building an 

awareness of the potential value of user participation in design.  Developers rarely 

become aware of the users’ pain.4 

                                                 
4 Because exposure to feedback is so rare, its effect on developers can be dramatic when it does 
occur.  Developers are often motivated by seeing videotapes of users struggling with their product, 
after a brief period of blaming the difficulty on the users.  (“I have a problem with this,” one 
development manager interrupted a screening to say.  “My problem is, I’m watching a moron.”  But 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

19 

This point deserves emphasis.  Engineers are engaged in a continuous process 

of compromise, trading off among desirable alternatives.  Interface improvements 

will be given more weight if engineers are aware of the far-reaching, lasting 

consequences of accepting an inferior design.  Consider some typical tradeoffs: 

“This implementation will save 10K bytes but be a little less modular.”  “This 

design will run a little faster but take 1 month longer to complete.”  “This 

hardware configuration provides two more slots but adds $500 to the sales price.”  

Each tradeoff requires a decision.  Once the decision is made, the price in 

development time, memory size, or chip expense is paid and the matter is left 

behind.  In this environment, the interface is just one consideration among many.  

“This interface would be better, but take 2 months longer to design.”  The 

decision may adversely affect thousands of users daily for the life of the product, 

but without feedback, a developer remains unaware of this special characteristic 

of the interface.  Once it is built and shipped, they are on to the next job, and other 

people (including users) must deal with any problems. 

3.7.  The Difficulty of Identifying Design Teams 

With whom are users to collaborate?  Despite recommendations that one 

group have responsibility for all aspects of usability (Gould, 1988), the “user 

interface,” broadly defined, is not the province of one recognizable team in a large 

product development company.  The hardware is designed by one group, the 

software by another, the documentation by a third, and the training by a fourth.  

Representatives from other groups have periodic involvement—reviewing design 

specifications, for example.  A product manager with little direct authority over 

developers may coordinate scheduling.  Individuals from several different 

marketing groups, such as competitive or strategic analysis5 and international 

marketing, can contribute.  Members of technical support groups, such as human 

factors or performance analysis, often participate, although not necessarily 

throughout the project.  Several levels of management monitor the process and 

comment at different stages.  Finally, turnover in project personnel can be a 

further obstacle to sustained user involvement. 

                                                                                                                                     

after being told that the person had worked for the company for 5 years and that a majority of 
testers had the same difficulty, the manager was soon enthusiastically proposing interface changes.) 

5 Competitive analysis may seem to be a logical ally of a development organization.  However, in 
practice its concern is often the effective marketing of existing products against competition, rather 
than the planning of future products. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

20 

In concert, these people contribute to defining a computer user’s eventual 

experience with the system or application, yet communication among them is 

often surprisingly sparse.  In Section 4, the divisions of responsibility in these 

organizations are discussed.  Established to reduce unnecessary communication in 

a time of less demanding user requirements, the divisions can now create 

problems. 

Poltrock (1989c) described a case in which lack of communication clearly 

affected usability.  A new release of a popular product introduced an improved 

method for accessing certain functions.  Although the developers planned to phase 

out the original, less efficient interface, they retained it as an alternative in this 

release to provide “backward compatibility” for current users.  But the training 

development group was not informed of the overall plan and developed training 

materials that taught only the old, inferior method. 

3.8.  The Late Involvement of Interface Professionals in Projects 

In a survey of interface designers from different disciplines within several 

large product development organizations, Grudin and Poltrock (1989) found late 

involvement in the software development process to be a widespread complaint 

among members of support groups.  For example, 57% of the human factors 

engineers and 28% of the technical writers reported typically being involved in 

projects before implementation started, whereas 100% of the former and 87% of 

the latter said they would prefer to be involved that early.  The human factors 

engineers estimated that for 39% of their projects involvement started too late; the 

technical writers estimated that 52% of the time they were involved too late. 

In Section 4, historical and organizational reasons for late consideration of the 

interface are described.  The project members most likely to advocate user 

involvement are those just mentioned.  If management is unaware of the need for 

their early and continual involvement, how much support will their calls for early 

and continual user involvement receive? 

3.9.  Not Enough Time 

The 200 interface designers responding to the aforementioned survey 

estimated that “insufficient development time” caused “substantial impairment” to 

over one third of all the interfaces developed—the greatest percentage of 

impairment attributed to any one factor.  One cause of this damaging haste, of 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

21 

course, is the competitive necessity or advantage in getting a product to market 

quickly.  A second cause is the late involvement in a development project of the 

nonprogrammer interface professionals, as just described.  These are clear barriers 

to extensive user involvement.  And as a final “Catch 22,” even late user 

involvement is blocked.  Once the underlying software code is frozen, a fully 

functioning system is available that users could try—but at that very moment, 

documentation moves into the critical path toward product release.  Because it is 

the software interface that is being documented, the interface is also frozen—

before a user can try it out! 

Poltrock (1989a) described in more detail the unique problems that high 

visibility and dependencies create for the interface development process.  One 

developer summed it up: 

I think one of the biggest problems with user interface design is that if you do 

start iterating, it’s obvious to people that you’re iterating.  Then people say, 

“How is this going to end up.”  They start to get worried as to whether you’re 

actually going to deliver anything, and they get worried about the amount of 

work it’s creating for them.  And people like [those doing] documentation are 

screwed up by iterations.  They can’t write the books.  Whereas software, you 

can iterate like mad underneath, and nobody will know the difference.  (pp. 

192-193) 

The fear that user involvement will lead to unacceptable delay is a major 

impediment in the time-pressured product development environment, despite 

arguments that this does not happen (e.g., Gould et al., 1987).  Even if some 

additional time is required, a product’s likelihood of succeeding may be much 

greater.  As recounted by Conway (1968, p. 29), “there’s never enough time to do 

something right, but there’s always enough time to do it over.” 

4.  GOALS THAT SHAPE INTERFACES WHEN USERS’ VOICES ARE 

NOT HEARD 

Everyone in an organization is working toward many goals at any given time.  

These include personal goals, team or group objectives, and the purposes of the 

organization as a whole.  Goals also enter the work environment that originate in 

industry-wide developments, in professional group activities, and in concerns of 

the local community and broader society.  There are far more goals in an 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

22 

organization than there are people—for a large development company, this means 

many goals indeed! 

These goals do not all conflict, of course.  Companies strive to see that 

employees share the corporate goals.  Teams are established in part to foster 

common goals of a more focused nature.  Ideally, people are working in concert or 

toward goals that have only incidental effect on the work of others.  But 

inevitably, goals conflict.  No one gets everything they would like.  Adjustments 

happen.  Discovering conflicts, arguing, compromising, horse trading, adjusting, 

re-prioritizing, and accepting is part of an ongoing process.  Much of it goes on 

unnoticed—we have highly developed skills that allow us to work unconsciously 

toward many of our objectives. 

Thus, in a product development organization, even someone whose job is 

limited to interface development is working toward many goals simultaneously, 

just one of which is developing a good interface.  Many interface developers have 

professional responsibilities that also include system design, programming, 

marketing, managing, and so on, creating even greater parallel goal-driven 

activity.  Common parallel project goals include designing and implementing 

reliable software and getting products out on time and within budget.  Equally 

evident, but of a different nature, are such goals as communicating design ideas, 

initiating promising projects, and assigning people where resources are needed.  

Other goals, such as insuring that people feel good about their work and are 

rewarded appropriately, may seem tangential to interface design.  However, the 

web of activity in an organization is tightly woven; as the hundreds of people in 

an organization work skillfully, often unconsciously, toward thousands of goals, a 

decision made in one area to address one concern will inevitably have effects, 

however subtle, elsewhere.  Indeed, steps taken to reach virtually any goal could 

influence an interface design.  These indirect effects may not be intended or even 

noticed; yet they can systematically distort the interface, introducing elements that 

work against the eventual users of the product. 

This distortion is particularly likely in the absence of knowledge about what 

would be better for users.  Confronted with a set of interface design alternatives 

and lacking knowledge of what would best serve users, we may decide on one 

alternative because it helps us attain another goal as well.  For example, one 

design may be chosen because it is easier to describe and communicate.  In this 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

23 

section of the article, I describe possible undesirable influences exerted on the 

interface by goals that are seemingly tangential to interface design.  Developers 

would be well advised to watch for these conflicting forces, which often go 

unnoticed, and persist in efforts to learn about users and their work environments.  

The competing goals are often genuinely important, so a solid case is often needed 

to convince colleagues to compromise them on behalf of the users. 

Following a brief description of well-known software development goals that 

trade off against one another and against interface optimization, I discuss other 

goals under the categories of individual goals, group or team goals, and 

organizational goals.  These attributions are necessarily imprecise.  An individual 

may internalize group or organizational objectives.  It can be difficult to pin down 

the objectives of groups, those often amorphous and overlapping organizational 

units wherein individual and organizational aspirations merge.  Complete 

consensus regarding corporate goals is not likely.  Nevertheless, the existence of 

personal objectives is evident, and one finds conscious efforts to create solidarity 

around specific team and organizational objectives. 

Another complication is that the same behavior often serves multiple goals, 

including goals operating at different levels.  For example, the goal of design 

simplicity may reflect a designer’s personal aesthetic values or contribute to the 

team’s engineering process or both. 

This list is not comprehensive.  It represents conflicts that have been observed 

to occur in some organizations.  It should therefore be considered suggestive and 

intended to portray some of the complexity of the development environment.  The 

hope is that readers will be vigilant lest these or other goals operate quietly to 

distort the interface design process. 

4.1.  SOFTWARE DEVELOPMENT GOALS 

Certain constraints that can affect the interface are particularly familiar 

because they force tradeoffs or compromises in other aspects of software 

development.  These competing goals are often the greatest impediment to 

usability.  Because most developers are all too aware of them, I mention them and 

then focus on more subtle problems that often escape notice.  The relative lack of 

attention by no means suggests relative lack of importance. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

24 

The goals of minimizing memory and processor use.  The declining cost of 

computer memory and processing time makes better interfaces possible and 

creates a demand for better interfaces by making computation accessible to more 

people.  Nevertheless, minimizing the use of these resources is still a major goal 

of most projects.  This creates pressure, for example, to constrain the size of on-

line help or reference texts and to limit processor-intensive interface activities.  

Research systems that explore advanced interface modalities, such as video, and 

advanced techniques, such as user modeling and coaching, utilize resources that 

are still not available to most products. 

The goal of modular code.  A major barrier to rapid advancement in interface 

design is that a hallmark of good software design—modular code organization—

works directly against a hallmark of useful user support—knowledge of context.  

The effectiveness of the help, advice, or tutoring that a system can provide is 

directly related to its ability to judge a user’s context at that moment.  Ultimately 

that can require reconstructing the very information that a well-designed system or 

application has carefully buried in a dispersed set of pointers. 

The goals of producing reliable, maintainable, secure software.  Reliability 

and maintenance can be adversely affected by the complexity of interfaces flexible 

enough to accommodate people with differing roles, experience, and preferences.  

Security considerations can impose a human memory load and require computer 

users to carry out extra steps. 

These and other goals integral to software development, some of them 

described below from more specific perspectives, can compete with usability.  

They are all valid goals in their own right.  In the absence of information about 

what computer users really require, it can be very difficult to justify interface 

design approaches or choices that compromise the efforts to reach these goals. 

4.2.  COGNITIVE PROCESSES AND INDIVIDUAL GOALS 

System development gives rise to many goals that operate primarily at the 

level of the individual developer.  In addition to goals that originate in system 

development responsibilities, individuals have personal goals arising from career 

plans, preferences, style, and even personality.  Conflicts based on these goals can 

emerge in the turbulent world of software development in general and interface 

development in particular.  Again, influences from different levels flow together.  

Personal attitudes shape the interactions between programmers and members of 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

25 

other groups contributing to the design and development of the interface; the 

organizational context also plays a major role. 

System development is a highly rational activity.  Cognitive activity is central 

to much of it, whether occurring at a terminal, with pen and paper, or in group 

settings.  Of course, other processes are involved: perceptual and motor at the 

terminal; motivational, emotional, and social in group contexts; and 

organizational in still broader contexts.  In considering individual goals in the 

workplace, however, cognitive processes are central.  Behavior is governed by 

cognitive abilities and limitations interacting with tasks and objectives.  The 

manifold goals present in the development environment act through cognitive 

tendencies to influence interface design.  A few of these cognitive tendencies are 

discussed next. 

Our inability to forget.  We may often complain about our bad memories, but 

at times it would be convenient to be able to forget on command.  If we could put 

out of mind what we know about how a computer works or how we ourselves use 

it, we could better imagine how someone less knowledgeable or with a different 

job will experience it.  But this we cannot do. 

Selective memory for salient events.  Our memory is not uniform.  We 

remember some things better than others.  This can interfere with objective 

design; we exaggerate the importance or frequency of the things that we attend to 

and ignore the frequency or detail of unexceptional activity that takes place. 

Difficulty making conscious the unconscious.  We are not even aware of most 

activity—our own and that around us.  We are so highly skilled and practiced at 

acting to reach many of our goals that doing so does not require conscious 

reflection.  The resulting lack of awareness makes it difficult to detect or deduce 

the true sources of many design decisions. 

Difficulty consciously handling multiple “channels.”  Although practice 

helps, we are not good at consciously working out the interactions of complex, 

multi-layered situations.  Because this describes most work situations (in both 

user organizations and in software product development environments as outlined 

here), we are not well equipped to understand these interactions.  With practice 

we may learn to handle such complexity unconsciously, but in delegating the 

process to uninspectable intuition, we allow other highly practiced activities to 

become part of the basis for our actions.  The effects on design of “other highly 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

26 

practiced activities” and the nondesign goals that they serve are explored in this 

section of the article. 

Individual Goals Arising From Professional Responsibilities 

The Goal of Understanding the Software Architecture 

Apart from the effects of carelessness, neglect, and ignorance,6 the most 

common source of poor interface design is probably the natural tendency of 

developers to map elements of the underlying software architecture onto the 

interface.  This is useful for developers:  If the interface reflects the underlying 

design, only one model of the system must be kept in mind.  But users arrive with 

a model that does not correspond to the software architecture, so they are forced to 

acquire a second model of the system.  In the early days of a new technology, 

most users are technically proficient, and it is both convenient and useful to reflect 

the architectural or engineering model in the interface.  But a less technical user 

population needs different interfaces.  The engineer sees relations among 

functions based on their implementation, whereas users construct different 

relations among the same functions based on their roles in the users’ tasks. 

Gentner and Grudin (1990) describe several cases in which the engineering 

model of a system was imposed on the interface to its detriment.  For example, 

one commercially available VCR remote control labelled its buttons 0-9 and A-F.  

This corresponded to the underlying hexadecimal representation but confused 

most users, who prefer labels such as Fast Forward and Reverse.  In another case, 

a software development team resisted adding a new function to a menu even 

though users expected it to be there, because the function was implemented quite 

differently from the other functions on that menu.  Similarly, developers decided 

the Print function should handle all system objects consistently according to their 

internal structure, even when this led to printing a folder (i.e., a directory) index 

when users expected to have the objects in the folder printed (Grudin, 1989). 

Here is a final example:  A user trying a new application opened a sequence 

of windows in the course of carrying out an action.  When this person closed one 

of the windows, all of the windows disappeared, one at a time.  The user reported, 
                                                 
6 These effects are (perhaps leniently) regarded here as unsystematic and are not discussed further.  
If detected through prototype testing or some other formal or informal means, the ill effects of 
carelessness or oversight do not draw support by serving other goals and thus may be relatively 
easily addressed. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

27 

I expressed my surprise to (a programmer familiar with the code, who) 

responded immediately that the cascading window closing made perfect 

sense, based on the C-code cascaded procedure calls, with each newly called 

procedure opening a new window.  [The programmer explained further, then] 

looked at me expectantly, waiting for the light of comprehension on my face.  

Instead I said that my new knowledge of how procedure calls caused the 

cascaded closing didn’t make me like the cascaded closing...  But this person 

didn’t get it. 

Even when intellectually recognizing the need to separate the software design 

from the interface design, an engineer cannot willfully forget the architectural 

model and assume the users’ perspective.  This point was emphasized by Gould 

and Lewis (1985) and illustrated metaphorically by Landauer (1988) with a 

“hidden figure” in a photograph:  It is difficult to see the figure, but once it has 

been pointed out, you will always see it.  You cannot return to the naive state. 

The Goal of Design Consistency 

“Experimental results... show that consistency (leads) to large positive 

transfer effects, that is, reductions in training time ranging from 100% to 300%” 

(Polson, 1988, p. 59).  “Build consistent user interfaces” (Rubinstein & Hersh, 

1984, p. 220).  “Strive for consistency.  This principle is the most frequently 

violated one, and yet the easiest one to repair and avoid [violating]” 

(Shneiderman, 1987, p. 61).  “The common application of design rules by all 

designers working on a system should result in a more consistent user interface 

design.  And the single objective on which experts agree is design consistency” 

(S. L. Smith & Mosier, 1986, p. 10). 

Developers have indeed taken the goal of consistency to heart, and it is true 

that unmotivated inconsistency is likely to cause users problems.  Unfortunately, 

especially for those who seek formal approaches to generating or monitoring for 

consistency, consistency can work against good interface design in several ways.  

As was noted, an interface that is consistent with the underlying software 

architecture may not be ideal for the computer user, such as when menu items are 

grouped according to aspects of their implementation rather than considerations of 

their use.  The use of engineering terms, such as the BREAK key, can be 

convenient and consistent for engineers but not for other users (for example, one 

corporate vice president attended a demonstration of IBM’s Presentation Manager, 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

28 

which defines how the OS/2 system displays information, expecting it to be about 

slide or transparency preparation and viewing).  Similarly, it can be consistent but 

undesirable to reflect an engineering perspective in error or status messages, such 

as “read error” when “check for disk damage” would be more helpful. 

Another problem is that consistency with a real-world analog can facilitate 

ease of learning while obstructing ease of use, or vice versa.  For example, several 

calculators initially adopted alphabetically arranged keyboards.  This arrangement 

helps in some initial learning situations due to its consistency with our experience 

of the alphabet, but it slows down experienced users.  The optimal keyboard 

design is not consistent in any obvious way at all.  (Other examples are described 

in Grudin, 1989.)  Especially when we are relatively ignorant about the users’ 

work practices, consistency is a helpful guideline, but considerations such as 

dialogue efficiency or the prevention of damaging accidents outweigh consistency 

in importance in many situations (Grudin & Norman, 1991). 

Consistency as a goal in itself also obscures the problem of choosing 

dimensions on which consistency could be useful; there are often many 

conflicting possibilities, each is consistent, but not all of them are good.  Everyone 

recognizes a foolish consistency, such as consistently capitalizing every other 

letter in command names, but subtler cases arise.  Sometimes the proper choice 

depends on the circumstances.  For example, in abbreviating command names, 

truncation (de for DELETE) is better when users will know the name and have to 

recall and type the abbreviation, whereas vowel deletion (dlt for DELETE) may be 

better when the users will see the abbreviation on a keycap and have to recall what 

it stands for, and single letters (d for DELETE) may be better for highly overlearned 

or prompted commands for which typing economy is critical (as in electronic mail 

options).  A developer could create a consistent set of abbreviations, but if it is 

mismatched to the users’ tasks, it will be a poor design. 

Only by understanding the users’ situations can developers get a handle on 

this matter.  Consider the task of categorizing wildflowers.  Botanists sort on the 

basis of leaf and petal shape, and many nature guides reflect this organization.  

But amateur nature lovers may start from the color of the flower, and some 

wildflower books organize flowers in sections by color.  Insects may categorize 

flowers by smell and deer by taste.  Since they can’t read, we don’t find books 

organized in these ways, but the example illustrates the diversity of possible 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

29 

approaches to objects.  Consistency chosen with the wrong task in mind can work 

against good design. 

The Goal of Design Simplicity 

In a review of work on programming aesthetics, Leventhal (1988) explored 

what it is about certain programs that appeals to programmers.  Among the factors 

frequently mentioned was the notion of simplicity.  “Programs have a kind of 

simplicity and symmetry if they’re just right,” said one programmer (p. 527).  The 

author summarized that “themes of simplicity and wholeness, as well as the 

taming of complexity are suggested” (p. 530). 

Simplicity serves other goals as well.  A simple design is likely to be easier to 

communicate to other team members, to test, and to modify.  For all of these 

reasons, a simple, elegant technical design is highly prized. 

One might assume that computer users will find a simple interface easier to 

use.  This is not always true.  Unmotivated complexity is likely to cause problems, 

but when people already make or would benefit from making a particular 

distinction, the simpler interface created by eliminating the distinction will be an 

inferior interface.  For example, business letters and computer programs can both 

reside on a system as ASCII files and even be edited by the same editor, but it is 

useful to use different iconic representations to distinguish them. 

Grudin (1986) described a problem that arose in the design of a desktop 

system in which, under the surface, all documents are located in a single central 

catalog.  A user sees a document displayed in a folder (i.e., directory) when, 

internally to the system, a pointer to the address of the document appears in the 

directory.  A document is shared, appearing in two directories, when identical 

pointers are placed in each directory.  From the system perspective, the two 

directories share the document on an equal footing; they cannot be treated 

differently because the pointers are indistinguishable.  However, users may expect 

the original document—the one in the folder where it was first created—to be 

treated differently than the linked version created later.  For example, a  REMOVE 

command could result in different dialogues for original and linked copies.  This 

would require more complex pointers that reflect information about object 

creation.  But the developers preferred to stick with the simple, elegant pointer 

implementation even when shown that the resulting interface dialogue could not 

accommodate users’ expectations.  In a similar case, McHenry, Lynch, and 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

30 

Goodman (1990) describe an information system consisting of thousands of files, 

each containing text notes entered by researchers over several years.  The creator 

of each text note was recorded, so it was considered an unnecessary complexity to 

record the original creator of a file.  This was fine at first, but the lack of a 

nominal owner eventually caused problems as users came and went; new users 

hesitated to extend or modify existing files, because they were unsure whom to 

ask about the files’ purpose or use. 

Another desktop metaphor example illustrates the tradeoff between simplicity 

and a potentially useful complexity.  Many systems represent all directories 

(collections of documents or other files) by folder icons.  Some systems add 

complexity by also providing cabinet icons and cabinet drawer icons.  Like the 

folder icons, these correspond to directories, essentially indistinguishable to the 

system (for example, one can place a cabinet inside a folder just as easily as the 

other way around).  Does having three different representations for directories 

complicate things?  The complexity is introduced to provide a methodical way to 

organize directories hierarchically.  Strictly to help users manage their files, the 

designers added a distinction that is not required by the system.  Having used both 

systems, I feel that in this case the designers wisely overcame the attraction of 

simplicity (although opinions on this matter differ). 

D. C. Smith, Irby, Kimball, Verplank, and Harslem (1982) described the eight 

main goals pursued by the designers of the Xerox Star.  Two of these were 

consistency and simplicity.  But the authors recognized the limitations of these 

goals and concluded that behavioral testing of a system is critical because even 

good designers’ intuitions are error-prone and “simplicity, like consistency, is not 

a clear-cut principle.  What is simplest along any one dimension (e.g., number of 

buttons) is not necessarily conceptually simplest for users.” 

Interface simplicity is not inherently bad; quite the contrary, many simple 

designs are good.  But simplicity is a different goal than goodness (usability and 

utility), and the two should not be confused.  Shneiderman (1987, p. 3) quoted 

Nelson on the goal of simplicity: 

Designing an object to be simple and clear takes at least twice as long as the 

usual way.  It requires concentration at the outset on how a clear and simple 

system would work... It also requires relentless pursuit of that simplicity even 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

31 

when obstacles appear which would seem to stand in the way of that 

simplicity. 

Sometimes, one of the obstacles to simplicity is good interface design. 

The Goal of Anticipating Low-Frequency Events 

A system or application design must cover all contingencies.  Because 

extremely low-frequency situations are precisely those that may escape diagnostic 

testing, developers think carefully about possible combinations of conditions and 

events.  Discovering a potential problem through logical analysis earns the 

admiration of one’s peers.  For the same reason, diagnostic testing itself must 

focus attention on low-frequency events. 

This concern with complex contingencies, coupled with our tendency to 

exaggerate the salience of the things we focus on, gives extreme cases a 

disproportionate influence on the design.  Interfaces may highlight features for 

circumventing or recovering from rare problems, creating clutter or distraction.  

For example, security procedures that burden users not only appear in particularly 

sensitive information systems but also can complicate interfaces in environments 

where mischief is highly unlikely. 

Some features provide little benefit while increasing the size of the software 

interface, documentation, and training, and the testing and maintenance burdens.  

Someone can no doubt devise a scenario in which such a feature would be useful, 

so its elimination can require empirical evidence of the subtle harmful 

consequences and the infrequency of the positive contribution.  Alternatively, a 

potentially useful feature that will break down in exceedingly rare situations may 

be abandoned early in the design process, when it could have been retained with 

suitable notifications or safeguards.  Preoccupied with logically possible 

contingencies that can become very convoluted, we forget how rarely they will 

occur.  The engineering maxim, “if something can go wrong, it will,” must be 

kept in perspective.  Too often the baby is thrown out with the bath water. 

Some interfaces do a good job of moving rarely used features to low-level 

menus or bringing them out in appropriately timed messages or prompts, rather 

than forcing them on our attention.  Some developers use empirical data to 

improve interfaces by eliminating such features (Gould et al., 1987).  However, 

this aspect of design must be monitored particularly carefully because several 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

32 

other goals described below also lead to undue emphasis on low-frequency 

operations. 

The Goal of Thoroughness 

Every software procedure goes through a similar process of being described, 

written, reviewed, and documented.  A standard documentation practice may 

require one procedure per page.  These and other checklist activities reinforce a 

perspective in which all functions are of uniform significance.  This goal of being 

methodical and thorough, while an important part of the development process, 

disguises the tremendous variability in importance and frequency of use of 

different operations to users.  The goal of thoroughness thus conceals the 

frequency and importance of some features in the computer use environment, just 

as does the goal of anticipating low-frequency events. 

This can distort the interface in several ways.  The HELP function on some 

systems lists dozens of commands in alphabetical order, confronting users with 

options that are obscure, ambiguous, and difficult to differentiate.  Their natural 

importance to a user should be reflected by considering task-based categories and 

frequency of use. 

Similar confusion or distraction results from printed documentation that lists 

functions alphabetically or lists one per page in a manner that reflects the 

development documentation on which it is based (and is more amenable to 

automatically generated documentation).  If one knows nothing about the 

computer use environment in which the application will be used, this may be the 

best one can do.  But any information about that environment, such as the 

potential frequency of use or probability of co-occurrence in a task, should make 

possible a more useful arrangement. 

Unfortunately, much experimental work in human-computer communication 

has ignored the variability in feature use.  For example, most studies of menu 

organization that have examined menu depth, breadth, and other variables test all 

menu items uniformly.  Yet we know that menu items are not selected uniformly 

in work settings.  Variations in frequency of use may outweigh most other factors 

in producing an optimal menu organization. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

33 

Individual Goals Arising From Personal and Career Issues 

The Goal of Protecting Turf (Retaining Responsibilities) 

Specialization in interface design is a relatively recent but rapidly spreading 

phenomenon in product development companies.  In the past, programmers and 

software engineers developing interactive software typically designed the interface 

along with the other components.  Many still do, but the growing importance of 

improving interfaces creates roles for interface specialists.  Specialists include 

human factors engineers, technical writers, graphic designers, and training 

developers.  Specialization will increase as new media—color, sound, video, 

animation—are more widely incorporated.  Some argue for the involvement of 

specialists in the dramatic arts (e.g., McKendree & Mateer, 1991; Mountford, 

1989). 

This new division of responsibility may be resisted by engineers who are 

losing part of their traditional responsibility (e.g., Blomberg, 1988).  Some 

engineers are happy to be relieved of this uncertain part of the design, but others 

see the interface as an enjoyable challenge or are acutely aware that users will 

judge the software on the basis of the interface—the visible part of the product. 

The Goal of Staying Current (Extending Skill Repertoire) 

In addition to retaining existing responsibilities, some developers see 

opportunities to broaden their contribution by working with newly emerging 

interface elements and modalities.  They find it interesting to work in these new 

areas or feel that they must, lest their skills become obsolete.  Engineers with no 

prior experience in graphic design, assigned to a project centered on a bit-mapped 

display, may enjoy designing icons, window borders, and so on.  An engineer 

whose graphic designs are acclaimed within the programming group may resist 

working with (or yielding to) a real graphic artist whose expertise would improve 

the product. 

The goals of retaining and extending one’s responsibilities, although 

potentially undermining interface quality, are consistent with one of Gould’s 

(1988) four key principles for designing usable systems:  Keep responsibility for 

usability under one roof.  When one programmer has total responsibility, this 

condition is met.  Although that is not Gould’s intent, it nevertheless points to a 

fundamental organizational challenge presented by the explosion of 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

34 

specialization:  How to coordinate the specialists effectively.  This key problem, 

which will recur in discussions of goals at the group and organizational levels, is 

particularly strongly felt in areas where programmers feel particularly competent, 

such as technical writing (Grudin & Poltrock, 1989).7 

The Goal of Personal Expression 

People have important, largely unconscious, goals of achieving psychological 

balance by obtaining attention, approval, respect, power, and so on.  This is often 

unstated in the engineering context, which prizes the antithetical goal of highly 

rational behavior.  Nevertheless, psychological factors are critical to the success of 

development projects (e.g., Boehm, 1988; Shneiderman, 1980).  Actions taken in 

furtherance of these personal goals have clear influences on system development, 

including interface development.  The “not invented here syndrome” as a barrier 

to adopting ideas is an example. 

Actions undertaken to satisfy personal goals can undermine the cooperation 

between software engineers and interface specialists in support roles: human 

factors, technical writing, industrial design, training, marketing, and so on.  

Nelson (1990), a prominent developer and writer, felt strongly about this problem: 

Historical accident has kept programmers in control of a field in which most 

of them have no aptitude: the artistic integration of the mechanisms they work 

with (in interface design).  It is nice that engineers and programmers and 

software executives have found a new form of creativity in which to find a 

sense of personal fulfillment.  It is just unfortunate that they have to inflict the 

results on users (p. 243). 

                                                 
7 Two cases in which development teams excluded writers are described by Good (1985) and 
Gould et al. (1987).  These studies indirectly illustrate the danger of such exclusion.  In the former, 
technical writers handled the printed documentation, but a software engineer designed the help and 
error message text.  Of the 362 suggestions received during iterative development, the largest 
category was “suggestions for improving the wording of particular help or error messages that users 
found to be confusing” (p. 573).  In the latter study, engineers retained control of the user guide, 
and “we iterated over 200 times on the English version of the user guide” (p. 762).  Each case study 
is presented as a demonstration of iterative design.  Iteration is unquestionably extremely valuable, 
yet one can ask whether such extensive iteration would have been required had professional writers 
designed the help messages, error messages, and user guide. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

35 

4.3.  SOCIAL PROCESSES AND GROUP OR TEAM GOALS 

Group dynamics introduce social, motivational, emotional, and political 

concerns that are less apparent when focusing on the work individuals do in 

isolation.  Some group- or team-level goals are unstated, possibly even 

unrecognized, and thus their influences are less apparent.  The key activities of 

communication and coordination are largely cognitive and amenable to rational 

analysis, whereas goals such as equitable treatment of group members and 

cooperation among them introduce explicitly motivational and emotional 

elements. 

The Goal of Communicating a Design 

Communication is a fundamental activity in large product development 

organizations; communication skills vary, but they are heavily exercised.  Because 

few interface designs in such organizations are written, reviewed, approved, and 

implemented by one person, they must be communicated.  A design that is easily 

communicated helps meet this goal.  Unfortunately, the resulting interface may 

not end up being so easy to use. 

For communicating a design, paper has been the preferred medium and 

brevity a preferred style.  Some designs are easy to describe on paper, and some 

are messy.  A set of pull-down menus that are no more than two levels deep, with 

each menu containing about ten items, looks elegant on the printed page.  In 

contrast, a design with branch points that extend three or four levels deep in 

places, containing some areas bristling with options and others sparsely populated, 

looks messy.  In the absence of hard evidence as to which users will prefer, why 

not go with the easily communicated design?  It seems to make sense that an 

easily described design will be easy to use. 

But this is often untrue.  A user’s dialogue with the computer is narrowly 

focused and extends over time, in contrast to the static, spatially distributed 

written design.  Presenting options at different points as a user proceeds can make 

good sense, as can menus that vary significantly in length and depth, depending on 

the contents, despite an inelegant or confusing appearance on paper. 

Paper presentation may disguise interface problems that users will stumble 

over repeatedly.  Consider an entire set of pull-down menus displayed on one 

page.  Readers searching for a particular item can find it in seconds, even if it is 

not under the most obvious heading.  But actual users never see the entire set of 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

36 

menus simultaneously.  If an item is under the wrong heading, they may wander 

around, inspecting possible synonyms or dropping down to search lower menu 

levels fruitlessly.  They may do this several times before finally learning the 

location of the item. 

Similarly, designers may avoid placing an option in two places in the 

interface.  It looks inelegant on paper and the gratitude felt by a user wandering 

down the avenues of the interface is difficult to imagine.  (The tendency to map 

the software architecture onto the interface and the “checklist approach” noted 

above also work against including multiple paths to a single operation.  

Procedures and their definitions appear only once in the code and the code 

documentation.) 

Problems for users originating in decisions that serve the goal of 

communication among developers are hard to detect on paper, yet they can be 

uncovered quickly with simple prototypes tested in conditions approximating 

work settings.  It has been suggested that prototypes could supplement or even 

replace documentation for communicating design proposals.  This is worth 

exploring, but prototypes, too, communicate some things better than others.8 

The Goal of Coordinating a Development Project 

Conway (1968) observed that design architectures often reflect the 

organizational structure of the development organization producing them.  He 

concluded a clever analysis with the observation, 

To the extent that an organization is not completely flexible in its 

communication structure, that organization will stamp out an image of itself 

in every design it produces.  The larger an organization is, the less flexibility 

it has and the more pronounced is the phenomenon.  (p. 30) 

The interface design is no exception to this rule. 

As noted, perhaps the most prevalent systematic source of interface problems 

is the imposition by developers of the “engineering model of the system” (i.e., the 

                                                 
8 Even superficial aspects of communicating on paper can influence design decisions.  A 
professional-looking design document impresses people.  In one development group in the mid-
1980s, the Macintosh quickly became an indispensable design tool when design documents 
incorporating its graphics outshined competing design documents. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

37 

underlying software architecture) on the interface.  This allows developers to work 

with a single model that covers both the system and the interface.  The 

“management model of the project” represents an analogous situation.  Managers 

must assign implementers to functions, and they also encounter these functions in 

reviewing the interface design.  (If the team follows the often-recommended 

practice of writing “a user manual” first, the manager deals with both 

simultaneously.)  It greatly simplifies things when the models coincide: when the 

interface reflects the assignment of programming tasks. 

A manager can find it easier to make the case for an additional programmer to 

code a specific function if the function is called a utility (and ultimately appears 

on the UTILITIES menu) than if it is described as being part of a function that is 

being coded by someone else.  However, users might expect to find the two 

functions together, rather than one moved to a UTILITIES menu.  Similarly, when 

one implementer handles several functions, the functions may gravitate to the 

same interface location.  And once aspects of the interface have been assigned to 

different people, integrating them in the interface can require an investment in 

additional communication and coordination. 

Many default design decisions made for the sake of convenience in this 

manner can be quickly reversed if they are shown to cause problems for users.  

But that evidence must be provided. 

The Goal of Compensating Developers 

It is desirable to reward a designer who creates a novel feature or a 

programmer who completes a difficult implementation.  One way to do so is to 

increase the work’s visibility through prominent placement in the interface.  From 

a user’s perspective, however, the appropriate time and place to provide access to 

a feature may be buried in an interface that gives prominent placement to more 

ordinary features.  When the goal of compensation takes precedence, the result is 

that a new command is defined when it would be better to add a parameter to an 

existing command, a new function key is assigned instead of extending the use of 

an existing function key, and so forth.  To appreciate this phenomenon, imagine 

the difference between being able to tell friends “I created one of the UNIX 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

38 

system commands,” and “I coded an option you can select by setting a flag on one 

of the Unix system commands.”9 

It can require solid evidence of user work patterns or preferences to justify a 

decision to bury a feature in an interface.  A friend once joked, “I work on this 2 

years and you get to it by hitting CONTROL X in some other application?”  Other 

goals can work in concert with the goal of compensation to promote visibility at 

the expense of usability.  Visibility can also serve marketing purposes:  It may 

appeal to buyers or customers, not users.  (Sometimes a customer subsequently 

becomes a user; sometimes the customer acts on behalf of users and focuses 

exclusively on functionality.)  Visible placement in the interface can also be the 

result of a new feature’s prominence in the developers’ minds. 

Several of the forces described above can coalesce into an irresistible case for 

a design,without any consideration of the users’ work requirements.  When 

developers collectively define the interface, as is often the case, the developer of a 

given feature sees it as distinct from the work done by others, understands its 

unique implementation, and regards equal prominence in the interface as a 

reasonable reflection of the effort it required; in addition, the result makes sense to 

management. 

Consider an example:  Several stand-alone, menu-driven office systems 

developed in the early 1980s include a spelling checker that appears high in the 

menu hierarchy.  To use it, one closes the document being edited, moves up in the 

menu hierarchy, selects the spelling checker, then reenters the name of the 

document that was just closed.  To resume editing after spelling correction, one 

accesses the word processor and reenters the document name.  This is extremely 

inconvenient:  One would generally prefer to enter the spelling checker from 

within the word processor (although perhaps not by typing CONTROL X!).  

Whatever factors contributed to this decision—ease of implementation, marketing 

visibility, the perceived importance of the feature, the need to coordinate or 

compensate developers, or others—the decision was governed by goals other than 

usability!10  

                                                 
9 The intention is not to pick on Unix, which may have reduced early excesses of this sort.  For 
example, the old DSW command has become the “-i” option in the RM command. 

10 In Polson and Lewis (1990), this word processor interface is examined by a program that 
formally analyzes interfaces for usability problems.  The program detects syntax problems in 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

39 

The Goal of Cooperation 

Compromise and finding workable tradeoffs are characteristic of work in 

development environments.  To improve the interface requires sacrifices 

elsewhere.  It would be easier if the interface reflected the underlying software 

architecture.  It would be easier if the interface reflected the organization of the 

code documentation.  It would be easier if formal properties of consistency or 

simplicity could be applied to interface design.  Where is the tradeoff point, when 

do we compromise?  If we rely on intuition and have no firm evidence of usability 

problems, being cooperative can mean compromising our intuitions concerning 

the interface all too often. 

Substantial give and take is present in an engineering environment that is 

ideally driven by rational decision-making.  People “call in IOUs” and “cash in a 

lot of chips” to reach important goals.  As mentioned in Section 3, the lack of 

feedback from existing users robs the interface of something that would give it 

additional weight: the awareness that it affects a lot of people for a long time.  

Because developers can quickly put it out of mind, the interface is easily 

compromised.  Even when the users’ perspective is in focus, it can fall victim to 

good-natured compromise. 

Several years ago, developers from two of a company’s merging product lines 

met to unify their “look and feel.”  One product used a 24-line display and 

presented status messages on the first line.  The other product used a 25-line 

display with messages on line 25, at the bottom.  Future customers would use both 

products together, so consistency was desirable.  Hours of debate over the relative 

merits and the difficulty of changing each product led to no agreement.  Finally, a 

solution was proposed:  The two products would display prompts consistently—

on line 25.  On the 24-line display, this would of course wrap around to the first 

line.  The proposal was accepted. 

To avoid unduly sacrificing the interface in the spirit of cooperation, the voice 

of the users must be heard.  Developers have difficulty arguing with users; we 

have all heard the expression “the customer is always right.”  An 

                                                                                                                                     

command parameters but did not catch this feature access problem.  To find this problem requires 
an understanding of the users’ work environment that is beyond the grasp of such systems.  While 
formal interface analysis can add to a developer’s inventory of tools, it will not replace the need for 
user involvement. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

40 

oversimplification, perhaps.  But we never hear “the user interface specialist is 

always right.”  So a user is a good ally to have. 

4.4.  ORGANIZATIONAL PROCESSES AND CORPORATE GOALS 

An organization can be considered a unit that interacts with other 

organizations, reacts to external events, and develops internal structures and 

processes in support of these activities.  Organizations work to prevail (or at least 

to survive) and to develop corporate cultures that provide purpose and continuity.  

Organizations can create as well as react to their environments (Mintzberg, 1984).  

Mintzberg argued that only certain combinations of internal and external 

conditions lead to organizational stability, which suggests that organizations 

should adopt specific sets of goals in order to reach, maintain, or shift among 

stable configurations.  The concept of organizational goals simplifies a reality in 

which conflicting goals are held by different managerial groups, but this 

observation only reenforces the view of an organization as a cross-current of goal-

driven activity.  This section is limited to exploring the influence of a few basic 

organizational goals on interface design. 

The Goal of Efficient Division of Labor 

In Section 3, I described the effects of division of labor in separating 

developers and computer users.  Contact with customers and users is channeled 

into sales, marketing, field service, customer support, training, and management.  

Expanding this picture, Figure 1 shows that the groups responsible for different 

parts of the interface are dispersed throughout an organization.  Those in 

marketing define high-level functionality, software and human factors engineers 

in development design the low-level software dialogue, the technical publications 

department writes the documentation, and a training group develops on-line 

training and training courses.  Translations and other adaptations for international 

versions of a product may be done in different countries.  Communication occurs 

via written requirements (e.g., between marketing and development), functional 

specifications (supplied to technical writers by development), and the actual 

software (provided to training developers).  Opportunities for miscommunication 

and lack of coordination are legion. 

This dispersal of responsibility extends to software itself.  As noted earlier, 

developers often do not know the application set with which their application will 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

41 

be marketed and used; if they do, the developers working on the other applications 

(or even on other parts of their own) may not be accessible.  As a result, users 

encounter confusing differences in the naming, styling, and organization of 

functions.  Establishing a “corporate look and feel” is a partial solution, but it 

risks placing a “foolish consistency” ahead of good design as an interface goal. 

The general neglect of on-line help is an example of divided responsibility 

affecting interface design.  A good help system might save a company a 

substantial expenditure on customer hand-holding, service calls, and printed 

documentation.  These savings would be in the budget for customer service.  But 

the effort and expense of developing the help system would come from the 

development department; this group is rewarded primarily for producing new 

products and functionality.  Affirmative action to promote on-line help is 

especially necessary given a possible lack of developer empathy with less 

experienced users, a condition that is reenforced by the lack of mutual contact.  

Thus, help systems often end up with a low development priority. 

Division of responsibility is necessary, and existing approaches efficiently 

serve many organizational functions.  But the current organizational structures 

worked more efficiently for the development and marketing of noninteractive 

systems in an era of less complex user requirements.  The lack of experience that 

companies have coordinating interactive systems development increases the 

difficulty of working across organizational boundaries.  Mutual education and 

trust are inhibited by differences in outlook and even language:  Sources of 

confusion include differences in the way certain terms are understood by 

developers, on the one hand, and customers and marketing representatives, on the 

other (Grudin, 1991a). 

How are these problems addressed?  Matrix management is one approach to 

overcoming organizational separation.  Employees from different groups with a 

range of skills are temporarily assigned to a project.  However, due to the 

perception or the reality that the contribution of technical support roles is limited 

to certain phases of a project, such assignments are often of limited duration and 

effectiveness.  The language barrier remains and is accompanied by other 

problems, such as an ambiguity and difficulty in  evaluating work.  An example of 

a matrix management effort succumbing to these forces is described in Grønbæk, 

Grudin, Bødker, and Bannon (in press). 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

42 

Development projects sometimes try to absorb the technical support functions 

(human factors, technical writing, training development, etc.) by assigning them to 

programmers or by hiring individuals directly for a project.  This may work for a 

time, but when a project is completed and the product is turned over to others for 

revision or maintenance, responsibility for the interface elements designed by the 

internal groups (screen layout, documentation, training, etc.) reverts to the 

relevant external support groups in the organization.  Sensitive about its initial 

exclusion, an external group may cheerfully throw away the version developed by 

the team and start over.  The resulting confusion does not benefit users. 

The increased need to understand user requirements has led to beefing up the 

use of internal and external mediators: marketing and systems analysts, 

consultants, and so on.  Is this more gradual approach an adequate response to the 

challenge?  Those calling for direct user involvement in development are 

explicitly questioning its soundness.  This issue is addressed in Section 5. 

The Goal of Managing Development 

Development projects must be managed, and the management process 

inevitably intrudes on many aspects of the activity.  The intent is that the 

intrusions be beneficial on the whole and of minimal harm in each area.  But there 

is growing recognition that widely advocated software development methods 

systematically impede the development of usable interactive products.  This came 

about due to the environments in which these methods originated. 

Most computer processing was done in batch mode; interactive systems were 

rare.  An emphasis on careful early design makes sense for noninteractive 

software, with its relatively predictable development course.  It works less well for 

the interface, where uncertainty about a workable design is the rule.  This is the 

motivation for prototyping and iterative design with user involvement.  Gould and 

Lewis (1985) emphasized the distinction of interactive software: 

“Getting it right the first time” plays a very different role in software design 

which does not involve user interfaces than it does in user interface design.  

This may explain, in part, the reluctance of designers to relinquish it as a 

fundamental aim.  In the design of a compiler module, for example, the exact 

behavior of the code is or should be open to rational analysis...  Good design 

in this context is highly analytic, and emphasizes careful planning.  Designers 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

43 

know this.  Adding a human interface to the system disrupts this picture 

fundamentally.  A coprocessor of largely unpredictable behavior (i.e., a 

human user) has been added, and the system’s algorithms have to mesh with 

it.  There is no data sheet on this coprocessor, so one is forced to abandon the 

idea that one can design one’s algorithms from first principles.  An empirical 

approach is essential.  (p. 305) 

Computing resources were too expensive to devote much to early interfaces.  

For example, the cost of memory once precluded extensive help texts or even 

error messages, and processor time was too expensive to permit users to examine 

help texts on-line anyway.  Those constraints have been disappearing quickly, but 

development processes and priorities shift more slowly. 

Contract and internal development projects were the focus, not product 

development.  The multi-stage waterfall model of software development arose in 

the context of large government projects.  Competitively bid contract development 

naturally emphasizes written specifications; a Catch-22 element is that developer 

contact with the eventual users is often prohibited or discouraged after 

requirements have been defined, which occurs prior to selecting the developers.  

Separate contracts may be awarded for system design, development, and 

maintenance.  The resulting development approaches include structured analysis, 

wherein the task “establish man-machine interface” is relegated to one sub-phase 

of system development (De Marco, 1978), and Jackson System Development, 

which  “excludes the whole area of human engineering in such matters as dialog 

design” (Jackson, 1983, pp. ix-x).  Variants of the waterfall method were widely 

promulgated; when computer companies turned to product development it was 

natural to try to apply it.  Of course, because such methods do not specify on-

going user involvement in design, project plans do not anticipate it. 

Most computer users were engineers who understood or were happy to learn 

the system.  As noted under the goal of understanding the software architecture, 

when the computer use environments are similar to a computer development 

environment, the interface that emerges during development and debugging is 

often adequate or even appropriate for use.  A legacy of that era is the widespread 

belief that the interface can be ignored or tidied up at the end of development.  

This was perhaps true for interfaces to engineers and programmers, but is not true 

for interfaces serving increasingly diverse user populations.  The lack of 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

44 

information about user environments is a source of inertia:  The degree to which 

development and use environments have diverged is not appreciated. 

In summary, the methods in use today originated to support the internal and 

contract development of expensive batch systems that were handled by engineers 

and trained operators, conditions that strongly discouraged user involvement in 

development and that do not describe contemporary product development 

contexts.  New approaches to development built around prototyping and iterative 

design (and thus incorporating user involvement) are emerging (e.g., Boehm, 

1988; Perlman, 1989), but they have yet to be proven or widely adopted.  

Unfortunately, as noted earlier, the high visibility and growing importance of the 

interface works against iterative design in three ways: (i) the interface is grouped 

with aspects of the product that must be “signed off” on early in development; (ii) 

other groups, such as those producing documentation, training, and marketing, are 

strongly tied to the software interface and affected by changes; and (iii) iteration 

or change in the interface is noticed by everyone, which can create uneasiness, 

especially in an environment with a history of stressing early design. 

Solutions to these problems can and will be found but will require changing 

the way we work.  Unfortunately, an innovative process proposal is unlikely to 

find management as receptive as is a detailed product design specification. 

The Goal of Effective Decision-Making 

Product development organizations rely on the informed intuitions of 

individual managers.  These intuitions are prone to special lapses when applied to 

a range of interface decisions. 

Decision-making involves a tradeoff between two desirable goals: 

maximizing the soundness of a decision and reaching the decision in a timely, 

efficient manner.  Inevitably, trained intuition plays an important role.  Executives 

and development managers generally have good track records, but interface 

development is a new concern:  Decision-makers have not had the experience to 

build or demonstrate their intuition in this area. 

The visibility of an interface brings it to management’s attention.  One 

developer cited in Poltrock (1989c) commented, 

If you put up an architecture model, not many people will come back and 

comment...  But if you actually put up screens and ask people to comment, 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

45 

everyone from the managing director down has their own personal idea...  The 

person who has designed the user interface sits there in a meeting and gets 

bludgeoned by a person 17 levels higher than them who just says, “I want my 

feature to behave like this.”  (pp. 10-11) 

The only solution proposed to this common problem is to obtain solid evidence 

from users for given design alternatives (Gould et al., 1987). 

Decision-makers in development environments often feel they know what 

they would like as users.  But they may not be typical users or even computer 

users at all; they all too often support interface technologies, such as voice and 

natural language, that promise to reduce learning time to zero but that have 

remarkably long histories of exaggerated forecasts and failure (Aucella, 1987; 

Grudin, 1988, 1990; Johnson, 1985).11  The problem is two-fold:  (i) the 

technologies themselves are extremely difficult to perfect (or even render 

adequate)—projects in these areas have been characterized as “black holes” 

(Williams, 1990)—and (ii) when available in circumscribed form, the 

technologies succeed only in restricted niches—for people who make heavy, 

direct use of computers, which excludes most decision-makers, the drawbacks 

usually outweigh any advantages that the current state of the art provides.12 

The failure of intuition is a particular problem in developing groupware, 

products designed to support groups (Grudin, in press).  Someone with good 

intuition may be able to use a spreadsheet for an hour and decide that many users 

will like it, but no one person’s intuitions can be expected to cover the range of 

                                                 
11 Actually, many managers would like computers to be like people, with whom they interact 
skillfully.  More explicit than most, Nicholas Negroponte, director of the MIT Media Laboratory, 
says “computers should be more like people,” (1990b, p. 246) and “the computer must be an old 
friend” (1990a, p. 351). 

12 This problem has an impressive pedigree.  Licklider and Clark (1962) included speech 
recognition and natural language understanding that could handle syntactic, semantic, and 
pragmatic aspects of language among 10 prerequisites for true human-computer “symbiosis,” 
although they were more aware of the difficulty than many who followed.  Exaggerated predictions 
dogged the 1970s and 1980s.  In “Information Technologies for the 1990s,” Straub and Wetherbe 
(1989) forecast that “human interface technologies” will be the information technologies with the 
greatest impact, and speech recognition and natural language will be the key human interface 
technologies.  Not surprisingly, the article was based on interviews with nine corporate chairmen, 
presidents, and executive directors, and one business school professor.  Equally optimistic is 
Negroponte’s August 1989 prediction that “the most significant development in the 
human/computer interface during the next five years will be in speech technology” (“Speech More 
Important,” 1989, p. 26). 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

46 

needs of group members who differ in role, experience, and preferences.  Not 

surprisingly, development managers tend to favor interfaces and applications that 

promise to benefit managers—project management applications, decision support 

systems, meeting scheduling and facilitation systems, voice applications, natural 

language interfaces, and so on—not realizing that these usually require other users 

to do extra work, sharply reducing the likelihood of a successful product.  In turn, 

the developers of such applications focus on interface features that support the 

principal beneficiary, a manager, neglecting or impeding the interfaces to other, 

often more frequent, users. 

The Goal of Competing in the Marketplace 

In addition to the inward-looking concerns emphasized thus far, large product 

development organizations manage external relationships with customers, 

competitors, and others.  These concerns create powerful forces that often intrude 

directly into the design process.  One, mentioned earlier, is the strategic need to 

conceal marketing plans, with the result that information about the eventual users 

is concealed from developers. 

Another force is the pressure for frequent releases that creates the time 

pressure mentioned in Section 3.  As competition and the pace of change increase, 

product development companies are pressured to turn out enhancements and new 

products in a rapid, predictable fashion.  In reading the following analysis, 

consider the implications for interface development in general and user 

involvement in particular: 

Ashton-Tate’s decline began with what is becoming a well-worn story in the 

industry: failure to upgrade a market-leading product. Dbase III Plus went for 

almost three years before being upgraded, while competitor’s products were 

upgraded as often as twice in that time.  (Mace, 1990, p. 43) 

A similar pattern of predictable new releases is found in other maturing markets, 

from automobiles to stereo systems.  The result is pressure for a predictable and 

controllable software development process: for routinization of development.  

Parker (1990) described a proposed solution to the problem described in the 

previous quotation: 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

47 

Lyons [an Ashton-Tate executive] responds that he can keep customers by 

providing predictable if not always exciting upgrades.  “Customers don’t 

want to be embarrassed; they want their investment to be protected.  If you 

are coming out with regular releases, even if they skip a release because a 

particular feature is missing, they will stay [with the product] because the cost 

of change is large.”  (p. 44) 

This strongly felt need for rapid, controlled development creates difficulties 

for design elements or approaches that have uncertain duration or outcome.  

Interface design generally has a relatively high level of uncertainty, and user 

involvement can increase development time and introduce the possibility of 

changes in direction.  This is the intent, of course—a better design means a 

changed design—but it nevertheless works against the powerful pressures for 

predictability.13 

An external force that is particularly potent when technology and the 

marketplace are changing rapidly is the installed base.  Existing users are 

simultaneously a blessing and a curse.  They provide a relatively reliable market 

for new products, but exert a conservative pressure against change.  Yet, change 

must be introduced:  The last remaining users of paper tape and punch cards may 

like their familiar technology, but product lines are eventually retired.  Interface 

change in particular requires existing users to adjust.  Resistance to an interface 

change can be overcome by determining the cost of adjustment; that is, by 

measuring the degree of disruption and the eventual productivity gain, data that 

are rarely collected. 

Unfortunately, demonstrating that most or all users will benefit from a change 

is not always enough.  Even worse than having a less than state-of-the-art product 

is having a reputation for abandoning existing customers.  However small or 

irrational the group opposing change, the product development company wants to 

avoid being known for deserting its users.  New companies can innovate without 

running this risk.  But established companies eventually have outmoded features 

                                                 
13 This pressure can mold the development organization and process.  In particular, there is a trend 
to routinize development—to eliminate dependence on any one person.  Arguments that discount an 
increased deskilling of programming have focused on the internal software development centers of 
large corporations (see Friedman, 1989), not on software product development; the latter is where 
the competitive pressures that motivate increased control are most evident. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

48 

cluttering product interfaces and development resources channeled into extending 

their lives at the expense of innovation and greater usability. 

A company that introduces and promotes a new feature can obtain a 

marketing edge, whether or not the feature provides any real benefit for users.  In 

response, competitors will develop the same feature without ascertaining or even 

caring about its contribution to usability.  Thus, we see the spread of unused 

software features. 

Finally, the goal of interface optimization is not always supreme, particularly 

if optimization is defined in terms of the performances of individual users and 

groups in isolation from a broader context.  The acceptance of a standard 

represents a decision to arrest optimization in order to accrue other benefits.  For 

example, the QWERTY typewriter keyboard layout is known to be suboptimal but it 

is deemed to be good enough.  As software applications mature, formal and de 

facto standards freeze significant aspects of interface development.  New concerns 

about interface copyright violation may also discourage incremental improvement 

in favor of licensing existing technology. 

5.  WAYS TO PROCEED 

This section describes approaches that are being used or could be used by 

product development companies to increase developers’ understanding of users 

and their work.  Different approaches are likely to be appropriate or possible in 

different circumstances.  I begin the section by examining positive conditions for 

obtaining direct user involvement in product development projects, then discuss 

approaches for overcoming obstacles to achieving direct user involvement, and 

finally examine alternatives to direct contact with users. 

5.1.  Positive Conditions for User Involvement 

To one working within a large product development organization, the 

obstacles sometimes seem insurmountable.  But there are grounds for optimism:  

Product development companies also provide support for involving users in 

interface design, primarily by putting interfaces themselves in the spotlight and 

providing incentives to improve them. 

Ease of learning and ease of use become important marketing edges as 

software products mature.  Adding a new bell or whistle does not help much if the 

already available functionality is underutilized.  A better interface is one way to 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

49 

distinguish a product and to increase its acceptance in a competitive marketplace.  

Applications are reaching out to discretionary users, people who have the choice 

of whether or not to use a computer, and the greater availability of alternatives 

further increases buyer discretion.  Computer users are likely to consider usability 

in exercising discretion. 

Large product development organizations often have considerable resources 

(development costs are highly amortized), and declining hardware and software 

costs permit more computational power to be directed to the interface.  Human 

factors engineers and interface specialists employed by these companies are in the 

forefront of research and development in this field. 

Relatively frequent upgrades and product replacements can help developers 

break out of “single-cycle” development.  Evaluation of existing product use can 

feed into the design of later versions, and good ideas arriving too late for use on a 

specific project can be retained for later use (Grudin, Ehrlich & Shriner, 1987).  In 

addition, projects to develop upgrades or replacements have users of the existing 

versions as good candidates for involvement in development. 

In contrast with in-house projects, product development efforts usually have a 

large supply of potential users, and the fate of a product is not so heavily 

dependent on situational factors operating in a given site.  Developers may 

interact with potential users without inadvertently jeopardizing the project by 

offending them or raising unduly high expectations.  In contrast with some 

competitively bid contract development situations, product developers encounter 

few legal constraints on interacting with users. 

Finally, large software development companies with established product lines 

may become resistant to change, but they were founded on change and recognize 

at a deep level that they must change to survive.  This leads to some inherent 

openness to experimentation, which can be amplified by evidence that the forces 

that work systematically against user involvement in development stand in the 

way of product optimization and success. 

5.2.  Processes That Incorporate User Involvement 

In seeking to overcome the obstacles, the power of persistence should not be 

underestimated.  Usability and contextual engineering approaches have been 

refined and used in product development (Gould, 1988, and Whiteside, Bennett, 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

50 

& Holtzblatt, 1988 are excellent summaries).  Prominent, successful case studies 

include the development of the Xerox Star interface (Bewley et al., 1983; D. C. 

Smith et al., 1982) and the IBM Olympic Message System (Gould et al., 1987); 

less heralded successes are numerous.  All have found ways to involve users, 

generally in iterative prototype definition and evaluation. 

Another promising resource is the experience derived from other 

development contexts, notably European projects based on internal or in-house 

development.  Partly because some of the obstacles described in this article are 

less salient in such contexts, user involvement is more often achieved.  Progress 

on developing the issues, techniques, and tools in this area are described in 

Bjerknes, Ehn, and Kyng (1987); Floyd, Mehl, Reisin, Schmidt, and Wolf (1989); 

and Greenbaum and Kyng (1991).  Of course, adapting what has been learned in 

internal development to product development is a significant challenge. 

In the UTOPIA project (an acronym in the Scandinavian languages for 

“training, technology, and products from a quality-of-work perspective), described 

in Ehn, 1989, some of these approaches were explicitly applied to a product 

development effort.  A small number of potential users—newspaper 

typographers—were heavily involved with the developers, and techniques 

including a newsletter were used to involve a much broader selection of potential 

system users on a more limited basis. 

Experiments with prototype testing and iterative development are increasing 

our understanding of when and how they are most effectively used.  Boehm’s 

(1988) spiral model of development builds these techniques into a disciplined 

software engineering methodology.  He is one of several writers encouraging an 

explicit change from the current focus on defining the development product to a 

focus on defining the development process.  Grønbæk et al. (in press) described a 

project that succeeded only after this shift occurred in midcourse. 

Due to the growing demand for more usable systems, practitioners may find a 

climate for limited experimentation with these and other approaches.  But even to 

begin working effectively requires a clear awareness of the obstacles, an 

understanding of why they are there, and a tolerant recognition that their source is 

in institutional constructs, not in unsympathetic individuals. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

51 

5.3.  Technology to Support User Involvement 

Rapid prototyping tools, a long anticipated solution, are finally becoming 

widely available.  A natural outgrowth of the participatory design efforts is a focus 

on prototyping tools that facilitate real-time modifications as computer users and 

developers work together (Grønbæk, 1990).  Tools that provide a smoother 

transition from a prototype to a production application will reduce the problems 

encountered with prototypes that do not readily scale up (Glushko, in press).  Just 

as code management systems have proven to be useful, single-user rapid-

prototyping tools could benefit from features to support the collaborative nature of 

most development. 

Video and other multimedia software support will enable development 

project members to communicate more effectively across distances.  Equally 

important, video is potentially a powerful tool for communicating users’ 

experiences to developers.  It can effectively convey both the specific details and 

the general richness of work environments. 

The need to bridge the information gap between development and use 

environments is so great that the computer should come to play a direct role.  

Before information about computer use can be communicated directly to 

developers, issues of privacy and confidentiality must be worked out; in some 

environments even benign monitoring will not be possible.  But so great are the 

potential advantages, for computer developers and for computer users, that efforts 

to find a mutually satisfactory arrangement will be amply rewarded. 

5.4.  Strengthening the Use of Mediators 

As we gain experience with  interfaces and as their importance increases, the 

traditional mediators or indirect communication paths between developers and 

users are improving.  Systems analysts, marketing personnel, consultants, user 

groups, and others are becoming more skilled at identifying and describing 

interface needs.  Standards organizations devote more attention to interface issues.  

Managers, software engineers, human factors engineers, and others who 

participate in development projects are becoming more knowledgeable about 

interfaces and interface development methods.  Trade publications, trade shows, 

journals, conferences, and books disseminate more information each year.  Also 

positioned between developers and the end users are other development and sales 

organizations, some of which are described in the next section. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

52 

The remarkable proliferation of these mediators may be a response to the 

relative difficulty of establishing direct communication between users and 

developers.  The success of these mediators in capturing and conveying the 

necessary information varies.  Clearly, they are likely to be more reliable in 

mature application domains than in new areas. 

5.5.  Redefining the User Population 

As computer use extends to more application domains and as product 

maturity increases, large product development companies must decide who their 

customers are.  They can focus on specific end user markets or can channel their 

efforts into building platforms for third-party developers and value-added resellers 

who have experience in specific domains.  Both trends were noted by the 

president of Philips, the Dutch electronics company, when he announced plans to 

narrow its focus to specific market segments, such as banking.  “There is a shift 

from selling directly to customers and retailers to selling indirectly through value-

added concerns who tailor the products to the customer needs” (“Philips, Facing 

Losses,” 1990, p. 13).  The independent value-added resellers, in turn, prefer to 

work on industry-standard software platforms. 

In taking this path, software is following hardware.  Long ago, hardware 

ceased being sold directly to end users without a layer of system software.  Now, 

system software and a standard application set is insufficient:  More customers 

require domain-specific software as a condition of purchase. 

This mediating process is illustrated by a case in which an internal group in a 

large company is developing software for telephone operators who take equipment 

orders.  The software will run on a workstation being developed by a major 

computer company.  In constructing and testing prototypes, the internal 

development group has achieved a high level of user involvement, working 

closely with several operators.  At the same time, these developers are serving as 

potential future users in a study conducted by members of the product company’s 

workstation development team.  Thus, the group is participating in two projects, 

one as developer and one as user; each development group has identified its own 

user population. 

The fundamental need for knowledge about users remains unchanged, but the 

identity of the users has changed.  When the users are software developers who 

customize or extend a product for specific markets, the gap to be bridged is 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

53 

different and perhaps shorter.  The product development company has in effect 

delegated responsibility for understanding the ultimate users of the system to the 

internal developers, value-added resellers, and other intermediaries operating in 

specific domains.  As these mediating groups grow in size and number, they are 

likely to encounter many of the same challenges that the large product 

development organizations have faced. 

What must product developers know about interfaces in this scenario?  They 

should know which features their developer-customers will want to tailor, and the 

corresponding ranges.  Interface features that will be passed directly on to end 

users require as much attention as ever. 

5.6.  Redefining the Development Company 

In the long term, organizational structures and development processes may 

evolve, institutionalizing solutions to the problems described here.  However, 

there is little sign of this happening quickly; many of the approaches that have 

been described in this section are being applied largely within existing structures. 

Traditional software methods are under pressure due to the recognition that 

they are inadequate for developing interactive systems (e.g., Boehm, 1988).  

Methods such as prototyping and iterative development are widely accepted as 

being necessary.  Many design faults that result from carelessness or haste, as well 

as many that originate in conflicting goals in the workplace, can be relatively 

easily filtered out with such techniques.  But, as was noted, current organizational 

structures and practices work against the application of these methods.  In 

addition, their application requires active user involvement.  Bringing this about 

will require organizational change, beginning with a greater awareness of the 

challenge. 

Most organizations would have to be restructured to follow Gould’s (1988) 

key principle of putting all aspects of usability under a single management.  

Gould’s injunction to be prepared to work in a “sea of changes” describes a 

situation more suited to an adhocracy than to the typical bureaucracy (Mintzberg, 

1984).  Although older companies may have difficulty changing, companies that 

formed as the present conditions were emerging may show more of these 

qualities.  And Gould’s vision is realized in the younger, smaller, third-party 

developers, value-added resellers, consulting, and other companies that move in to 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

54 

insulate the large companies from end users.  They may be the interface 

laboratories of the future. 

6.  CONCLUSION 

The software development process is one of constant compromise.  Tradeoffs 

are forced by conflicting engineering considerations, management decisions, and 

product marketing constraints.  Development time is pitted against additional 

functionality; hardware capability vies with price considerations.  Tradeoffs also 

emerge from the other forces described:  One design is easier to communicate 

than another, one group deserves greater recognition, two projects compete for 

one available engineer, and so forth.  Designing and building a quality interface is 

always a goal, but it is just one of many.  In the absence of a strong case for 

particular choices, aspects of the interface are undervalued when the tradeoffs are 

resolved.  Interface quality is compromised much too readily. 

In Section 3, I outlined obstacles that product developers face in improving 

interfaces by involving users in design and evaluation.  In Section 4, I described 

competing goals that underlie those obstacles or that act directly to distort 

interfaces.  In most cases, activity in furtherance of these goals is so highly 

practiced that side effects on interface design go unnoticed.  The best way to 

overcome these forces—or more accurately, to balance them, since they represent 

legitimate goals—is to obtain clear evidence of what is required to enhance 

usability.  In the struggle to satisfy multiple constraints, silent, weak, or indecisive 

users’ voices are not a strong constraint. 

A secondary purpose of this article is to hint at the complexity of workplaces: 

to show what will be involved in understanding work environments well enough 

to position computers in them.  The workplaces described here are special—

product development environments—but it is reasonable to assume that computer 

use environments, although often differing radically from development 

environments, are equally complex.  Developing sufficient understanding of their 

complexity will not be easy. 

Product development companies can address the problem of increasing 

developers’ understanding of users and their work in several ways, described in 

Section 5.  They can reorganize or restructure their development methods to 

increase direct contact, use technology to increase the flow of information, 

increase their use of mediators, and redefine their user population. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

55 

ACKNOWLEDGMENTS 

Tom Malone provided crucial encouragement in 1985.  Through 5 years of 

collecting data and organizing observations, Susan Ehrlich Rudman and Steve 

Poltrock were invaluable colleagues.  Tom Dayton, Michael Good, John Gould, 

Gary Perlman and John Richards helped with specific issues.  Wang Laboratories 

and MCC provided opportunities to experience and study these phenomena, and 

Aarhus University provided the time to put this together.  The paper was 

improved considerably by comments from Phil Barnard, Elizabeth Dykstra, Tom 

Erickson, Don Gentner, Bob Glushko, Michael Good, Tom Malone, and an 

anonymous reviewer, and by particularly careful reviews by John Bennett and 

Judy Olson. 

REFERENCES 
Aucella, A. F. (Moderator).  (1987).  Voice: technology searching for communication 

needs.  Proceedings of the CHI+GI’87 Conference on Human Factors in 
Computing Systems, 41-44.  New York: ACM. 

Bewley, W. L., Roberts, T. L., Schroit, D., & Verplank, W. L.  (1983).  Human 
factors testing in the design of Xerox’s 8010 ‘Star’ office workstation.  
Proceedings of the CHI’83 Conference on Human Factors in Computing 
Systems, 72-77.  New York: ACM. 

Bjerknes, G., Ehn, P., & Kyng, M. (Eds.).  (1987).  Computers and democracy: A 
Scandinavian challenge.  Brookfield, VT: Gower. 

Blomberg, J.  (1988).  The variable impact of computer technologies on the 
organization of work activities.  In I. Greif (Ed.), Computer-supported 
cooperative work: A book of readings (pp. 771-781).  San Mateo,CA: Kaufmann. 

Boehm, B.  (1988).  A spiral model of software development and enhancement.  
IEEE Computer, 21, 5, 61-72. 

Conway, M. E.  (1968, April).  How do committees invent?  Datamation, 28-31. 

De Marco, T.  (1978).  Structured analysis and system specification.  New York: 
Yourdon. 

Ehn, P.  (1989).  Work oriented design of computer artifacts.  Hillsdale, NJ: 
Lawrence Erlbaum Associates, Inc. 

Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G., & Wolf, G.  (1989).  Out of 
Scandinavia: Alternative approaches to software design and system development.  
Human-Computer Interaction, 4, 253-349. 

Friedman, A. L.  (1989).  Computer systems development: History, organization and 
implementation.  Chichester, UK: Wiley. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

56 

Gentner, D. R., & Grudin, J.  (1990).  Why good engineers (sometimes) create bad 
interfaces.  Proceedings of the CHI’90 Conference on Human Factors in 
Computing Systems, 277-282.  New York: ACM. 

Glushko, R. J.  (in press).  Seven ways to make a hypertext project fail.  Technical 
Communication, 38, 3. 

Good, M.  (1985).  The iterative design of a new text editor.  Proceedings of the 
Human Factors Society 29th Annual Meeting, 571-574.  Santa Monica, CA: 
Human Factors Society. 

Gould, J. D.  (1988).  How to design usable systems.  In M. Helander (Ed.), 
Handbook of Human-Computer Interaction  (pp. 757-789).  Amsterdam: North-
Holland. 

Gould, J. D., Boies, S. J., Levy, S., Richards, J. T., & Schoonard, J.  (1987).  The 
1984 Olympic Message System: A test of behavioral principles of system design.  
Communications of the ACM, 30, 758-769. 

Gould, J. D., & Lewis, C. H.  (1983).  Designing for usability—key principles and 
what designers think.  Proceedings of the CHI’83 Conference on Human Factors 
in Computing Systems, 50-53.  New York: ACM. 

Gould, J. D., & Lewis, C.  (1985).  Designing for usability: Key principles and what 
designers think.  Communications of the ACM, 28, 300-311. 

Greenbaum, J., & Kyng, M. (Eds.).  (1991).  Design at work: Cooperative design of 
computer systems.  Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. 

Grudin, J.  (1986).  Designing in the dark: Logics that compete with the user.  
Proceedings of the CHI’86 Conference on Human Factors in Computing 
Systems, 281-284.  New York: ACM. 

Grudin, J.  (1988).  Why CSCW applications fail: Problems in the design and 
evaluation of organizational interfaces.  Proceedings of the CSCW’88 Conference 
on Computer-Supported Cooperative Work, 85-93.  New York: ACM.  Revised 
as Why groupware applications fail: Problems in design and evaluation, Office: 
Technology and People, 4, 3, 1989, 245-264. 

Grudin, J.  (1989).  The case against user interface consistency.  Communications of 
the ACM, 32, 1164-1173. 

Grudin, J.  (1990).  Groupware and cooperative work: Problems and prospects.  In B. 
Laurel  (Ed.), The art of human-computer interface design (pp. 171-185).  
Reading, MA: Addison-Wesley. 

Grudin, J.  (1991a).  Interactive systems: Bridging the gaps between developers and 
users.  IEEE Computer, 24, 4, 59-69. 

Grudin, J.  (1991b).  Obstacles to user involvement in software product development, 
with implications for CSCW.  International Journal of Man-Machine Studies, 34, 
435-452. 

Grudin, J.  (in press).  Groupware and social dynamics: Eight challenges for 
developers.  Communications of the ACM. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

57 

Grudin, J., Ehrlich, S. F., & Shriner, R.  (1987).  Positioning human factors in the 
user interface development chain.  Proceedings of the CHI+GI’87 Conference on 
Human Factors in Computing Systems, 125-131.  New York: ACM. 

Grudin, J., & Norman, D. A.  (1991).  Language evolution and human-computer 
interaction.  Proceedings of the Thirteenth Annual Conference of the Cognitive 
Science Society.  Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. 

Grudin, J., & Poltrock, S.  (1989).  User interface design in large corporations: 
Communication and coordination across disciplines.  Proceedings of the CHI’89 
Conference on Human Factors in Computing Systems, 197-203.  New York: 
ACM. 

Grønbæk, K.  (1990).  Supporting active user involvement in prototyping.  
Scandinavian Journal of Information Systems, 2, 3-24. 

Grønbæk, K., Grudin, J., Bødker, S., & Bannon, L.  (in press).  Achieving 
cooperative system design:  Shifting from a product to a process focus.  In D. 
Schuler and A. Namioka (Eds.), Participatory design.  Hillsdale, NJ: Lawrence 
Erlbaum Associates, Inc. 

Jackson, M.  (1983).  System development.  Englewood Cliffs, NJ: Prentice-Hall. 

Johnson, T.  (1985).  Natural language computing: The commercial applications.  
London: Ovum. 

Landauer, T. K.  (1988).  Research methods in human-computer interaction.  In M. 
Helander (Ed.), Handbook of Human-Computer Interaction  (pp. 905-928).  
Amsterdam: North-Holland. 

Leventhal, L. M.  (1988).  Experience of programming beauty: some patterns of 
programming experience.  International Journal of Man-Machine Studies, 28, 
525-550. 

Licklider, J. C. R., & Clark, W. E.  (1962).  On-line man-computer communication.  
AFIPS Conference Proceedings 21, 113-128. 

Mace, S.  (1990, January 8).  Defending the Dbase turf.  InfoWorld, pp. 43-46. 

McHenry, W. K., Lynch, K., & Goodman, S. E.  (1990).  Task, group, system:  The 
collaborative research “package.”  Unpublished manuscript. 

McKendree, J., & Mateer, J.  (1991).  Film techniques applied to the design and use 
of interfaces, Proceedings of the 24th Hawaii International Conference on 
System Sciences, Vol. 2, 32-41.  Los Alamitos, CA: IEEE Computer Society. 

Mintzberg, H.  (1984).  A typology of organizational structure.  In D. Miller and P. 
H. Friesen (Eds.), Organizations: A quantum view (pp. 68-86).  Englewood 
Cliffs, N.J.: Prentice-Hall. 

Mitch Kapor face to face.  (1987, January).  INC. Magazine, pp. 31-38. 

Mountford, J.  (Moderator).  (1989).  Drama and personality in user interface design.  
Proceedings of the CHI’89 Conference on Human Factors in Computing 
Systems, 105-108.  New York: ACM. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

58 

Negroponte, N.  (1990a).  Hospital corners.  In B. Laurel  (Ed.), The art of human-
computer interface design (pp. 347-353).  Reading, MA: Addison-Wesley. 

Negroponte, N.  (1990b).  The noticeable difference.  In B. Laurel  (Ed.), The art of 
human-computer interface design (pp. 245-246).  Reading, MA: Addison-
Wesley. 

Nelson, T. H.  (1990).  The right way to think about software design.  In B. Laurel  
(Ed.), The art of human-computer interface design (pp. 235-243).  Reading, MA: 
Addison-Wesley. 

Parker, R.  (1990, January 8).  Bill Lyons’ task: Incremental moves to consistency.  
InfoWorld, p. 44. 

Perlman, G.  (1989).  Asynchronous design/evaluation methods for hypertext 
technology development.  Hypertext’89 Proceedings, 61-81.  New York: ACM. 

Philips, facing losses, to trim 10,000 jobs.  (1990, July 3).  International Herald 
Tribune, pp. 1, 13. 

Polson, P.  (1988).  The consequences of consistent and inconsistent user interfaces.  
In R. Guindon (Ed.), Cognitive science and its applications for human-computer 
interaction (pp. 59-108).  Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. 

Polson, P. G., & Lewis, C. H.  (1990).  Theory-based design for easily learned 
interfaces.  Human-Computer Interaction, 5, 191-220. 

Poltrock, S. E.  (1989a).  Innovation in user interface development: Obstacles and 
opportunities.  Proceedings of the CHI’89 Conference on Human Factors in 
Computing Systems, 191-195.  New York: ACM. 

Poltrock, S. E.  (1989b).  Participant-observer studies of user interface design and 
development (MCC Tech. Rep. No. ACT-HI-125-89).  Austin, TX: MCC. 

Poltrock, S. E.  (1989c).  Participant-observer studies of user interface design and 
development: Communication and coordination (MCC Tech. Rep. No. ACT-HI-
162-89).  Austin, TX: MCC. 

Rubinstein, R., & Hersh, H.  (1984).  The human factor.  Bedford, MA: Digital. 

Shneiderman, B.  (1980).  Software psychology: Human factors in computer and 
information systems.  Cambridge, MA: Winthrop. 

Shneiderman, B.  (1987).  Designing the user interface: Strategies for effective 
human-computer interaction.  Reading, MA: Addison-Wesley. 

Smith, D. C., Irby, C., Kimball, R., Verplank, B., & Harslem, E.  (1982, April).  
Designing the Star user interface.  Byte, pp. 242-282. 

Smith, S. L., & Mosier, J. N.  (1986).  Guidelines for designing user interface 
software (Report No. 7 MTR-10090, Esd-Tr-86-278).  Bedford, MA: MITRE 
Corporation. 

Speech more important interface than graphics, Media Lab’s Negroponte tells 
SIGGRAPH.  (1989, November).  Byte, p. 26. 



Human-Computer Interaction, 6, 2, 147-196, 1991. 

 

59 

Straub, D. W., & Wetherbe, J. C.  (1989).  Information technologies for the 1990s: 
An organizational impact perspective.  Communications of the ACM, 32, 1328-
1339. 

Whiteside, J., Bennett J., & Holtzblatt, K.  (1988).  Usability engineering: our 
experience and evolution.  In M. Helander (Ed.), Handbook of Human-Computer 
Interaction  (pp. 791-817).  Amsterdam: North-Holland. 

Williams, M.  (1990).  Panel statement, summarized in: The loyal opposition.  
Proceedings of the CHI’90 Conference on Human Factors in Computing 
Systems, 54.  New York: ACM. 


